
Performance tuning of Graph500 benchmark
on Supercomputer Fugaku

Masahiro Nakao (RIKEN R-CCS)

2

Outline

Graph500 Benchmark
Supercomputer Fugaku
Tuning Graph500 Benchmark on Supercomputer Fugaku

3

Graph500

Graph500 has started since 2010 as a competition for
evaluating performance of large-scale graph processing
The ranking is updated twice a year (June and November)
Fugaku won the awards twice in 2020

One of kernels in Graph500 is BFS (Breadth-First Search)
An artificial graph called the Kronecker graph is used
Some vertices are connected to many other vertices while
numerous others are connected to only a few vertices
Social network is known to have a similar property

https://graph500.org

4

Overview of BFS

BFS

Input：graph and root Output：BFS tree

Data structure and BFS algorithm are free

5

Hybrid-BFS

It is suitable for small diameter graphs used in Graph500
Perform BFS while switching between Top-down and Bottom-up
In the middle of BFS, the number of vertices being visited
increases explosively, so it is inefficient in only Top-down

0

1

11 0

1

11

Top-down Bottom-up

Search for unvisited vertices
from visited vertices

Search for visited vertices
from unvisited vertices

[Beamer, 2012] Scott Beamer et al. Direction-optimizing breadth-first
search, SC ’12

6

2D Hybrid-BFS

Distribute the adjacency matrix to a 2D process grid (R x C)

Communication only within the column process and within the
row process
Allgatherv, Alltoallv, isend/irecv/wait

The closer the R and C values are, the smaller the total
communication size

[Beamer, 2013] Scott Beamer, et. al. Distributed Memory Breadth-
First Search Revisited: Enabling Bottom-Up Search. IPDPSW '13.

7

Outline

Graph500 Benchmark
Supercomputer Fugaku
Tuning Graph500 Benchmark on Supercomputer Fugaku

8

Supercomputer Fugaku

RIKEN Center for Computational Science@KOBE, Japan
158,976 nodes, scheduled to commence sharing in 2021
Note that the results of this presentation do not guarantee
performance at the start of sharing as it is currently a pre-
sharing evaluation environment

9

Node on Fugaku

CPU has 48 compute cores
and 2/4 assistant cores
Handle interrupts such as OS

2.0 GHz or 2.2 GHz for each job
CPU consists of 4 CMGs
CMG consists of 12 + 1 cores
and 8GiB HBM2
The number of processes per
CPU be a multiple of 4

Tofu Interconnect D (Tofu-D)
6D mesh/torus
XYZabc-axis, 10 cables
6 simultaneous communication

Specification

CPU (A64FX)

CMG : Core Memory Group
NOC : Network on Chip
TNI: Tofu Network Interface

10

Network topology of Tofu-D

https://pr.fujitsu.com/jp/news/2020/04/28.html

6D mesh/torus : XYZabc-axis
The size of abc is fixed (a,b,c) = (2,3,2)
The size of XYZ depends on the system
The size of XYZ of Fugaku is (24,23,24),
so it has 24*23*24*2*3*2 = 158,976 nodes

Process Mapping
Discrete assignment
1D torus or mesh
2D torus or mesh
3D torus or mesh

R

C

Node 12 nodes

11

Outline

Graph500 Benchmark
Supercomputer Fugaku
Tuning Graph500 Benchmark on Supercomputer Fugaku

12

Overlapping communication with computation

Asynchronous send/recv neighborhood communication in two
directions to effectively use torus direct network
Communication and computation overlap by splitting processing

変更前 変更後

Unprocessed

Processing

Done

Send

Step1

P(0) P(0)P(1) P(1)P(2) P(2)

Step2

Step3

AfterBefore

13

Number of processes per node (1/2)

Process per node (ppn)
1 process 48 threads (1ppn)
2 processes 24threads (2ppn)
4 processes 12threads (4ppn)

G
TE

P
S

10^5

10^4

10^3

10^2

10^1
16 64 256 1024 4096 16384

1ppn

2ppn

4ppn 3.0

2.5

2.0

1.5

1.0
R

at
io

 w
ith

 1
pp

n
2ppn

4ppn

16 64 256 1024 4096 16384

The larger the number of nodes, the smaller the performance difference

Number of nodes Number of nodes
1ppn : R x C = 128 x 128
2ppn : R x C = 256 x 128
4ppn : R x C = 256 x 256

The result of 16384 nodes of 2ppn
could not be obtained
due to a system malfunction

Performance Performance Ratio with 1ppn

B
etter

The BFS performance unit is
traversed edges per second (TEPS),
which represents the number of
edges searched per second

14

Number of processes per node (2/2)
R

at
io

 o
f p

ro
ce

ss
in

g

1ppn 4ppn

R
at

io
 o

f p
ro

ce
ss

in
g imbalance

send/recv

alltoallv

allgather
calculation

As the number of nodes increases, the rate of communication increases
1ppn has a smaller rate of communication than 4ppn
If the number of nodes is increased further, the communication ratio will
increase. Thus, we will measure at 1 ppn, which can bring out the full
communication performance
The result for 16,384 nodes at 1 ppn was 18,450 GTEPS

Number of nodes Number of nodes
16 64 256 1024 4096 16384 16 64 256 1024 4096 16384

100%

80%

60%

40%

20%

0%

100%

80%

60%

40%

20%

0%

15

Use of Eager method (1/3)

In the point-to-point communication of most MPI implementations,
the Eager and Rendezvous methods are implemented
Eager is automatically selected when the size is small
Rendezvous is automatically selected when the size is large

Sender Receiver

MPI_Send MPI_Recv

Sender Receiver

MPI_Send
MPI_Recv

message

CTS

message

RTS

Asynchronous communication that
can start/end the message sending
process regardless of the state of
the sending/receiving processes

Synchronous communication to send/
receive messages after both MPI
processes are ready to communicate

Eager Rendezvous

16

Use of Eager method (2/3)

The send/recv communication method used in the previous
experiment was all Rendezvous
If a node has enough memory and you want
to promote asynchronous communication,
you can increase the usage rate of
the Eager method by passing a parameter
(-mca btl_tofu_eager_limit) to mpiexec

R
at

io
 o

f p
ro

ce
ss

in
g

1ppn

Number of nodes

imbalance
send/recv

alltoallv

allgather

calculation

17

Use of Eager method (3/3)

Time of send/recv

0

0.1

0.2

0.3

0.4

0.5

16 32 64 128 256 512 1024 2048 4096 8192 16384
0

1

2

3

4

no_eager eager

0.5

0.4

0.3

0.2

0.1

0

E
la

ps
ed

 ti
m

e
(s

ec
.)

16 64 256 1024 4096 16384
Number of nodes

Rendezvous Eager

imbalance
send/recv

alltoallv

allgather

calculation

Time in 16,384 nodes
4

3

2

1

0E
la

ps
ed

 ti
m

e
(s

ec
.)

E
ager

R
endezvous

The result of 16,384 nodes using Eager method is 19,496 GTEPS, which
is a 5.7% performance improvement over the result using Rendezvous
method (18,450 GTEPS)
In the following experiments, we will execute BFS using Eager method

B
etter

B
etter

18

Boost mode and Eco mode (1/2)

User can specify CPU frequency for each job
Normal mode : 2.0 GHz
Boost mode : 2.2 GHz

Eco mode : Two floating-point arithmetic pipelines of A64FX are limited to one,
and power control is performed according to the maximum power
Since BFS does not perform floating-point arithmetic, the use of Eco mode
can be expected to reduce power consumption without affecting
performance

Normal :
Boost :
Normal Eco :
Boost Eco :

2.0 GHz, two floating-point arithmetic pipelines
2.2 GHz, two floating-point arithmetic pipelines
2.0 GHz one floating-point arithmetic pipeline
2.2 GHz one floating-point arithmetic pipeline

19

Boost mode and Eco mode (2/2)

Performance (TEPS) ratio Power Efficiency (TEPS/W) ratio

Number of nodes Number of nodes

The result of Normal mode is 1.00. Boost modes give high performance,
Eco modes give high power efficiency
Boost Eco mode has a good balance between performance and power
efficiency. The result for 16,384 nodes is 20,098 GTEPS, which is a 3.1%
performance improvement over the previous result (19,496 GTEPS)

B
etter

B
etterR

at
io

 w
ith

 N
or

m
al

R
at

io
 w

ith
 N

or
m

al

20

Six-dimensional process mapping (1/3)

Network topology in Fugaku
The size of six axes is (X, Y, Z, a, b, c) = (23, 24, 23, 2, 3, 2)
The maximum value of each axis when 2D process mapping is
performed in the Fugaku job scheduler
YZc × Xab = 1,104 x 114 = R x C
However, it is desirable that
the values of R and C are close

Fix BFS code to assign processes
to any axis
The closest combination of R and C is
XY × Zabc = 552 x 288 = R x C

R

C

21

Six-dimensional process mapping (2/3)

C axis has high performance when all nodes are adjacent
Example of assigning abc axis (2 x 3 x 2) to C axis
The horizontal is the first axis, and the vertical is
the remaining axes
To make the first and last processes (0 and 11)
adjacent physically

22

Six-dimensional process mapping (3/3)
Measure BFS using 158,976 nodes (XY × Zabc = 552 x 288 = R x C)
Boost Eco mode
Performance: 102,955 GTEPS, Power: 14,961 kW, Efficiency: 6.9 MTEPS/W
Performance is 3.3 times that of the K computer (82,944 nodes), and power
efficiency is 1.9 times that of IBM Sequoia (Blue Gene/Q)

1/4 Fugaku1/16 Fugaku 1/1 Fugaku

23

Summary

Tune performance of BFS in Graph500
Overlap communication and calculation
Number of processes per node
Eager v.s. Rendezvous
Boost mode and Eco mode
Six-dimensional process mapping

Future works
NUMA-aware optimization

