
HPC Asia 2019@China, Guangzhou, Jan. 14-16, 2019

Multi-Accelerator Extension in OpenMP
based on PGAS Model

Masahiro Nakao, Hitoshi Murai, Mitsuhisa Sato
(RIKEN Center for Computational Science)

Background

2

Single compute node has multi-accelerator
To improve the power performance ratio further
For example, "Summit" in ORNL has
six Tesla V100 GPUs per compute node

Accelerators are widely used in various fields
e.g. GPU, Xeon Phi, and PEZY-SC2
Excellent power performance ratio and memory bandwidth
Many systems are ranked in the Top/Green 500 lists

3

Motivation

Accelerator programming languages :
CUDA (for only NVIDIA GPU)
OpenACC
OpenMP (4.0 and later)

High portability since they don't depend on a specific architecture
Easily develop a parallel code for an accelerator from a sequential
code for a host

However, they don't support to deal with multi-accelerator
This is an issue of a programming for the latest architecture

Directive-based approach

Objective

4

We propose to extend OpenMP syntaxes to deal with
multi-accelerator
Implement some benchmarks using the OpenMP syntaxes,
and evaluate them

5

Agenda

Background
Extended OpenMP syntaxes
Evaluation
Summary

Comparison of OpenMP and OpenACC

6

The syntaxes of OpenMP and OpenACC are very similar

However, OpenMP has more various functions for a host
(CPU thread) than OpenACC
OpenMP also supports parallelization for shared memory
To exploit all computing resources of a compute node, it is
indispensable to use a host as well as accelerators
If you use OpenACC, OpenMP is also required for host
programming, but when using OpenMP, you need only OpenMP

double a[N], b[N], c[N], scalar = 1.0;
#pragma omp target map(to: b,c) map(from: a)
#pragma omp teams distribute parallel for
for(int i=0;i<N;i++)
 a[i] = b[i] + scalar ∗ c[i];

double a[N], b[N], c[N], scalar = 1.0;
#pragma acc data copyin(b,c) copyout(a)
#pragma acc parallel loop
for(int i=0;i<N;i++)
 a[i] = b[i] + scalar ∗ c[i];

OpenMP OpenACC

OpenMP Accelerator Programming

7

STREAM Triad for a single accelerator

target directive indicates that its range is a kernel for accelerator
map clause indicates data transfer
Transfer the arrays b[] and c[] from host to accelerator before the
kernel execution, and the array a[] from accelerator to host after
the kernel execution

teams distribute parallel for directive indicates that the following for
statement is executed on the accelerator

double a[N], b[N], c[N], scalar = 1.0;
#pragma omp target map(to: b,c) map(from: a)
#pragma omp teams distribute parallel for
for(int i=0;i<N;i++)
 a[i] = b[i] + scalar ∗ c[i];

double a[N], b[N], c[N], scalar = 1.0;
int ndevs = omp_get_num_devices();
assert((N % ndevs) == 0);
int chunk = N / ndevs;
#pragma omp parallel num_threads(ndevs)
{
 int dev_num = omp_get_thread_num();
 int lb = dev_num ∗ chunk;
 int ub = lb + chunk;
#pragma omp target map(to:b[lb:chunk],c[lb:chunk])
map(from:a[lb:chunk]) device(dev_num)
#pragma omp teams distribute parallel for
 for (int i=lb;i<ub;i++)
 a[i] = b[i] + scalar ∗ c[i];
}

OpenMP Accelerator Programming

8

STREAM Triad for multi-accelerator

Obtain number of accelerators

Calculate chunk size for
each accelerator

Spawns host threads the number
of which is the same as
the number of accelerators

Specify device number

Transfer only the data
necessary for each accelerator

Current Issues

9

Necessary to divide data/task to accelerators manually
Evenly divide data/task and map them appropriately to each accelerator
Communication among accelerators may also be required
e.g. Halo exchange in a stencil calculation
omp_target_memcpy() is used to perform the communication

Need thread programming to spawn host threads, each thread deals with
a singe accelerator

Since the above works are cumbersome, we propose to extend
OpenMP syntaxes to make it easy to handle multi-accelerator.
The extended OpenMP directive divides data/task to accelerators
automatically, and it is easy to generate communication among
accelerators.

PGAS (Partitioned Global Address Space)

10

Parallel programming model for high productivity and performance
on distributed memory system
Provide a global memory space composes of local memories, and
each execution unit can freely access the global memory space
Since an affinity between the local memory and each execution unit
is presented, its feature enables users to do programming with data
locality awareness

M

E

Conventional model
(e.g. MPI etc)

M

E

M

E

M0 M1 M2

PGAS

E1E0 E2

XMP, UPC, Coarray
Fortran, X10, and so
on

Execution Unit

Local Memory

Propose new OpenMP syntaxes

11

Features of the new OpenMP syntaxes for multi-accelerator
Divide data/task automatically
Communication among accelerators easily

Inherited from XMP (http://xcalablemp.org) for C and Fortran
New terms "Device set" and "Distributed array"

Device set is a set of multi-
accelerator connected to one host.

New OpenMP syntaxes can describe
processing like a single computational
resource for a device set

Distributed array is an array distributed on a device set

STREAM Triad using new syntaxes

12

double a[N], b[N], c[N], scalar = 1.0;
#pragma omp target map(to: b,c) map(from: a) device(0:4) layout(block)
#pragma omp teams distribute parallel for device(0:4) layout(block)
for(int i=0;i<N;i++)
 a[i] = b[i] + scalar ∗ c[i];

device clause specifies a sub-array as "device(start:length)"
A directive with a device clause works on its specified devices

layout clause specifies a distribution-manner
block ：block distribution
* ：Not distribute
array-name：Distribution defined by the specified array

Support multi-dimensional arrays and nested-loops
double d[N][M];
#pragma omp target map(to:d) device(0:2,0:2) layout(block,block)

Laplace's equation

13

double u[N][N], v[N][N];
 : // Initialize u and v

for(int k=0;k<TIMES;k++){

 for(int j=1;j<N−1;j++)
 for(int i=1;i<N−1;i++)
 v[j][i] = u[j][i];

 for(int j=1;j<N−1;j++)
 for(int i=1;i<N−1;i++)
 u[j][i]=(v[j−1][i]+v[j+1][i]+v[j][i−1]+v[j][i+1])/4.0;
}

Laplace's equation by new syntaxes

14

double u[N][N], v[N][N];
 : // Initialize u and v
#pragma omp target enter data map(to:u) device(0:4) layout(block,*)
#pragma omp target enter data map(to:v) device(0:4) layout(block,*) shadow(1,0)
 :
for(int k=0;k<TIMES;k++){
#pragma omp target teams distribute parallel for layout(v)
 for(int j=1;j<N−1;j++)
 for(int i=1;i<N−1;i++)
 v[j][i] = u[j][i];
#pragma omp target reflect(v)
#pragma omp target teams distribute parallel for layout(v)
 for(int j=1;j<N−1;j++)
 for(int i=1;i<N−1;i++)
 u[j][i]=(v[j−1][i]+v[j+1][i]+v[j][i−1]+v[j][i+1])/4.0;
}
#pragma omp target exit data map(from:v) layout(v)

Laplace's equation by new syntaxes

15

double u[N][N], v[N][N];
 : // Initialize u and v
#pragma omp target enter data map(to:u) device(0:4) layout(block,*)
#pragma omp target enter data map(to:v) device(0:4) layout(block,*) shadow(1,0)

The device and layout clauses distribute
only first dimension of u[][] and v[][]
The shadow clause adds halo region

halo region

Laplace's equation by new syntaxes

16

for(int k=0;k<TIMES;k++){
#pragma omp target teams distribute parallel for layout(v)
 for(int j=1;j<N−1;j++)
 for(int i=1;i<N−1;i++)
 v[j][i] = u[j][i];
#pragma omp target reflect(v)
#pragma omp target teams distribute parallel for layout(v)
 for(int j=1;j<N−1;j++)
 for(int i=1;i<N−1;i++)
 u[j][i]=(v[j−1][i]+v[j+1][i]+v[j][i−1]+v[j][i+1])/4.0;
}
#pragma omp target exit data map(from:v) layout(v)

Loop-statements are
distributed according
to the distribution
defined by array v[][].

target reflect directive updates halo regions
between neighborhood accelerators

Also develop various communication directives
broadcast, reduction, global-array-move (refer to our paper)

Develop compiler system

17

Omni Compiler is a source-to-source compiler infrastructure
http://omni-compiler.org

Extended OpenMP syntaxes are translated to general OpenMP
syntaxes and a part of code is modified if necessary

Finally, the backend compiler
compiles the translated code to
generate the execution binary
with linking the runtime library
(Some features are under
construction) +General

Translated code

18

double a[N], b[N], c[N], scalar = 1.0;
#pragma omp target map(to: b,c) map(from: a) device(0:4) layout(block)
#pragma omp teams distribute parallel for device(0:4) layout(block)
for(int i=0;i<N;i++)
 a[i] = b[i] + scalar ∗ c[i];

double ** _omni_a = _omni_target_map_start(OMNI_TO, a, sizeof(double), 1,0,4,N, OMNI_BLOCK, ..);
double ** _omni_b = _omni_target_map_start(OMNI_TO, a, sizeof(double), 1,0,4,N, OMNI_BLOCK, ..);
double ** _omni_c; = _omni_target_map_start(OMNI_FROM, a, sizeof(double),1,0,4,N, OMNI_BLOCK, ..);
#pragma omp parallel num_threads(4)
{
 int t = omp_get_thread_num();
 double * _tmp_a = _omni_a[t];
 double * _tmp_b = _omni_b[t];
 double * _tmp_c = _omni_c[t];
 int lb = _omni_get_num_lbound(OMNI_BLOCK,0,N,4,t);
 int ub = _omni_get_num_ubound(OMNI_BLOCK,0,N,4,t);
#pragma omp target teams distribute parallel for is_device_ptr(_tmp_a, _tmp_b, _tmp_c) device(t)
 for(int j=lb;j<ub;j++)
 _tmp_a[j] = _tmp_b[j] + scalar * _tmp_c[j];
}

// Pointers on each devices.

// Lower-/Upper-bounds

19

Agenda

Background
Extended OpenMP Syntaxes
Evaluation
Summary

Evaluation of productivity and performance

20

STREAM Triad
HIMENO Benchmark
http://accc.riken.jp/en/supercom/documents/himenobmt/
Evaluates the performance of incompressible fluid analysis code
Typical stencil application

Productivity (1/2)

21

Source lines of code

0

40

80

120

160

200

STREAM HIMENO

original (single acc.)

proposed (multi-acc.)

current (multi-acc.)

58 58
69

140 141

189

The number of lines of the codes using proposed OpenMP syntaxes
are less than those using general OpenMP syntaxes

better

General for single acc.

Proposed for multi-acc.

General for multi-acc.

Productivity (2/2)

22

How many lines are required to rewrite a code for multi-acc.
from that for single acc.

0

10

20

30

40

50

60

Omni manual

add modify

0

2

4

6

8

10

12

14

Omni manual

add modify

3

13

7

52

Using proposed OpenMP syntaxes is much less amount of rewriting code than
using general OpenMP syntaxes

Proposed ProposedGeneral General

better

STREAM Triad HIMENO Benchmark

STREAM Triad for performance

23

better

Proposed
General

The size of array is 2^{28}

The results of “Proposed” and “General” are almost the same, but only for 4 GPUs, the
result of “Proposed” is a little worse. The translated code by Omni Compiler is slightly
different from manual, so it seems that optimization of the backend compiler (clang-ytk)
does not work a little in the benchmark.

HIMENO Benchmark for performance

24

The performance of "Proposed" are almost the same as those of "General".
(a little better)

better

Proposed
General

the problem size is (MIMAX, MJMAX, MKMAX) = (256, 256, 512)

25

Agenda

Background
Extended OpenMP Syntaxes
Evaluation
Summary

Conclusion

26

To further increase productivity for multi-accelerator
programming, we propose new OpenMP syntaxes
We develop the omni compiler for the proposed OpenMP syntaxes,
and implement benchmarks using it
The productivity of the proposed OpenMP syntaxes are much
better than that of general OpenMP syntaxes
The performance of the proposed OpenMP syntax achieved
almost the same as that of general OpenMP

Future work
Evaluate more various applications
To support accelerated cluster systems, we plan to develop a new
language which combines the parallel language XcalableMP and
the proposed OpenMP

