A Method for Order/Degree Problem based on Graph Symmetry and Simulated Annealing with MPI/OpenMP Parallelization

Masahiro Nakao, Hitoshi Murai, Mitsuhisa Sato (RIKEN Center for Computational Science)

HPC Asia 2019@China, Guangzhou, Jan. 14-16, 2019

Background (1/3)

- Order/Degree Problem (ODP) in graph theory
 - Find a graph with the smallest diameter and average shortest
 path length (ASPL) given an order n and a degree d
 - diameter is a maximum distance between nodes
 - ASPL is an average distance between all nodes
 - Degree is a number of edges connected to one node

Background (1/3)

- Order/Degree Problem (ODP) in graph theory
 - Find a graph with the smallest diameter and average shortest
 path length (ASPL) given an order n and a degree d
 - diameter is a maximum distance between nodes
 - ASPL is an average distance between all nodes
 - Degree is a number of edges connected to one node

Background (1/3)

- Order/Degree Problem (ODP) in graph theory
 - Find a graph with the smallest diameter and average shortest
 path length (ASPL) given an order n and a degree d
 - diameter is a maximum distance between nodes
 - ASPL is an average distance between all nodes
 - Degree is a number of edges connected to one node

Background (2/3)

- ODP is useful for design of network topology with low latency since network topology in HPC systems affects its performance
 - Supercomputers

- Data centers in Google, Amazon etc.
- Processor chip (e.g. Knights Landing has 72 cores)
 - Packet network in many core processor

https://www.extremetech.com/extreme/171678-intel-unveils-72-core-x86-knights-landing-cpu-for-exascale-supercomputing

Background (3/3)

Ν	10	Problem (n, d)		
	1	72, 4		
	2	256, 5		
	3	256, 10		
	4	2300, 10		
	5	3019, 30		
	6	4855, 30		
	7	12000, 7		
	8	20000, 11		
	9	40000, 8		
	10	77000, 6		
	11	132000, 8		
	12	200000, 32		
	13	200000, 64		
	14	400000, 32		

11 problems in 2012

Graph Golf Competition for ODP

- http://research.nii.ac.jp/graphgolf
- Held by National Institute of Informatics, Japan since 2015, every year
- Rule
 - Find graphs with the smallest diameter and ASPL in problems
 - Problems are changed every year
 - Participants uploads found graphs on the official website within a limited period (May 14 to Oct. 14, 2018)

Objective

- Proposes an algorithm for efficiently solving ODP based on "graph symmetry" and "simulated annealing (SA)"
 - Evaluate "search performance" and "speed performance"
 - Won award of Graph Golf Competition in 2018

Award ceremony, CANDAR'18, Takayama, Gifu, Japan

Agenda

- Background
- Related works
- Explain our algorithm
- Evaluation of search and speed performances
- Summary

Related Works (1/2)

- Randomized topology [Koibuchi2012, Koibuchi2013, Singla2012]
 - When connecting nodes randomly, the distance shrinks due to the small world effect
 - Extensibility and failure resistance

https://www.nii.ac.jp/userimg/openhouse/2015/B11.pdf (Partial modification)

Related Works (2/2)

Are randomized topologies best ? -> No

From the order *n* and degrees *d*, the theoretical diameter lower bound K_{n,d} and the ASPL lower bound L_{n,d} are calculated.

$$K_{n,d} = \begin{cases} \left\lceil \frac{n-1}{2} \right\rceil & \text{if } d = 2\\ \left\lceil \log_{d-1}(\frac{(n-1)(d-2)}{d}) + 1 \right\rceil & \text{if } d > 2 \end{cases}$$

$$L_{n,d} = \begin{cases} 1 & \text{if } K_{n,d} = 1\\ \frac{S_{n,d} + K_{n,d}R_{n,d}}{n-1} & \text{if } K_{n,d} \ge 2 \end{cases}$$

$$S_{n,d} = \sum_{i=1}^{K_{n,d}-1} id(d-1)^{i-1}$$

$$R_{n,d} = n - 1 - \sum_{i=1}^{K_{n,d}-1} d(d-1)^{i-1}$$

http://research.nii.ac.jp/graphgolf/2016/ candar16/graphgolf2016-fujiwara.pdf

There is a gap between random topology and the theoretical lower bound

What are difficult points in ODP ?

(1) The number of graphs satisfying the given order n and degree d is enormous

- Number of graphs satisfying (n, d) = (12, 4) is about 480 billions
- It is difficult to find the best solution because a landscape of ODP's search space has many local optima

(2) The calculation time required for obtaining ASPL is enormous

- The calculation complexity with order *n* and degree *d* is **O(n^2*d)**
- For the graph with (n, d) = (400000, 32), the calculation time required for obtaining ASPL is about 5.5 hours on Xeon Ivy Bridge (Diameter are calculated at the same time as ASPL)

Agenda

- Background
- Related works
- Explain our algorithm
- Evaluation of search and speed performances
- Summary

Origin of idea

- What kind of topology does small diameter and ASPL have ?
 - Randomized topology is better than regular topology for latency
 - But, randomized topology is not best

Origin of idea

- What kind of topology does small diameter and ASPL have ?
 - Randomized topology is better than regular topology for latency
 - But, randomized topology is not best

Topology with both regular and randomized properties may be better

Approach

(1) Make the network topology symmetrical

- SA's search performance may be improved due to reduce search space
 - SA is a one of random search algorithms, and the reason why SA is used that it doesn't easily fall into local optima
 - Reduce calculation time of ASPL (Up to 10,000 times with (n, d)=(400000, 32))

(2) Reducing the calculation time of ASPL further

- Hybrid parallelization with MPI and OpenMP on our cluster system (Up to 200 times on 400 CPU cores with (n, d)=(400000, 32))
- Calculation time of ASPL decreased from 5.5 hours to 0.01 sec.

Our source code is available at https://github.com/mnakao/GraphGolf

about 2,000,000 times faster (= 10,000 x 200)

Graph symmetry

• Examples of the graph symmetry with (n, d) = (24, 3)

- The variable **g** is the number of groups (g must be a divisor of n)
- When a graph is viewed as a plane, if it is rotated by 360/g degrees, the connection relationship between the edge and the node becomes the same graph
- For the case of g = 1, a normal graph (not symmetrical) is obtained

SA with Graph symmetry

(1) Create a random graph with the number of nodes of the target graph divided by g, and duplicate g graphs (the graph with (n, d) = (6, 3) is created x 4). And select one edge from each graph symmetry.

(2) Connect both sides so that it becomes symmetrical

SA with Graph symmetry

By performing the operation, a new solution is generated while maintaining symmetry

SA with Graph symmetry

- Reduce the calculation time for ASPL
 - In general, it calculates distances from all nodes to other nodes using breadth first search (BFS)
 - However, with graph symmetry, the distances from the node to other nodes are the same for all symmetrically related nodes
 - Thus, the complexity becomes O(n^2*d/g) from O(n^2*d)

Agenda

- Background
- Related works
- Explain our algorithm
- Evaluation of search and speed performances
- Summary

Search Performance

Proposed method is executed 100 times with different g

- In vertical axis, ASPL Gap is a difference from theoretical lower bound
- Search performance tends to increase as the g increases
- However, the problem (n, d) = (72, 4), the search performance is better for g=9 than for g=12, indicating that search performance may decrease if the value of g is too large
 - The g expresses the strength of regularity of a graph; regularity becomes stronger as g increases

Search Performance

Proposed method is executed 100 times with different g

How do I set the value of g?

- Firstly, set a value of g which is as large as possible
- Next, gradually reduce the value of g
- (n, d) = (132000, 8)

The optimum g can be found by gradually reducing the value of g until ASPL Gap gets worse

Speed Performance

• COMA cluster system at University of Tsukuba

CPU	Intel Xeon-E5 2670v2 2.8 GHz x 2 Sockets		
Memory	DDR3 1866MHz 59.7GB/s 64 GB		
Network	InfiniBand FDR 7GB/s		
Software	intel/16.0.2, intelmpi/5.1.1, Omni Compiler 1.2.1		
	Python 2.7.9, networkx 1.9		

Speed-up techniques

- Graph symmetry
- Hybrid parallelization with MPI and OpenMP

Performance results by Graph Symmetry

Measure time to calculate ASPL 100 times

- The bars show the time on the left vertical axis, and the lines show the speed up ratio with g = 1 on the right vertical axis
- Speed ups of 8.11, 31.76, 15.67 times, respectively, were achieved for (n, d, g) = (72, 4, 12), (256, 5, 32), and (256, 10, 16)
 The larger g, the smaller the time for ASPL

Performance results by Hybrid Parallelization

- Multiple BFS are executed using MPI at the same time, and each BFS is executed in parallel using OpenMP threads
- The maximum number of processes is (n/g)
 - In this case, each rank is in charge of one node
- In problem (n,d,g) = (400000,32,10000), the performance with 40 procs. and 10 threads is about 200 (5.97 x 35.11) times faster than that with 1 proc. and 1 thread

Results of Graph Golf 2018

No	Problem (n, d)	Groups	ASPL Gap	++
1	72, 4	9	0	X
2	256, 5	32	0.02255	X
3	256, 10	16	0	X
4	2300, 10	115	0.03132	X
5	3019, 30	15	0.00237	
6	4855, 30	15	0.00057	
7	12000, 7	1000	0.26531	. +
8	20000, 11	1000	0.12263	
9	40000, 8	1600	0.12066	
10	77000, 6	2200	0.22312	.+
11	132000, 8	4400	0.29266	
12	200000, 32	5000	0.01362	_ +
13	200000, 64	2500	0.25707	
14	400000, 32	10000	0.07890	

Proposed method won 8 problems in 14 problems

Agenda

- Background
- Related works
- Explain our algorithm
- Evaluation of search and speed performances
- Summary

Conclusion

- In the proposed method, the topology is made symmetrical, making it possible to efficiently find a good solution
- Making the topology of the graph symmetrical reduced the calculation time required for the ASPL
 - Moreover, by using hybrid parallelization with MPI and OpenMP, the calculation time for the ASPL was further reduced
 - A performance improvement of about 200 times was achieved for the problem (n, d, g) = (400000, 32, 10000) using only the hybrid parallelization
 - In addition, since graph symmetry was also applied, the performance improvement was about 2,000,000 times compared to that obtained with g=1
 - The calculation time of ASPL decreased from 5.5 hours to 0.01 seconds