
第171回HPC研究会@国立情報学研究所，2019年9月20日

Order/Degree問題のための重みなしグラフにおける 
全点対間最短経路アルゴリズムの並列化

中尾昌広，村井均，佐藤三久
（理化学研究所 計算科学研究センター）

 2

Background

The network topology of a large-scale parallel computer system
affects the overall performance
Supercomputer
Data center

It is important to design the network topology so that the
diameter and average distance of the number of hops
between calculation nodes are small

Designing such a network topology can be defined as
an Order/Degree problem in graph theory

 3

What's Order/Degree problem ?

Dia. = 3
Ave. Dis. = 85/45
 = 1.89..

(n, d) = (10, 3)

全点対間最短経路（APSP）

All-pairs- 
shortest-
path

By considering the calculation node as “vertex” and the network
wiring as “edge”, the network topology is represented as a graph
The Order/Degree problem is to find the graph with the smallest
diameter and average distance from a set of unweighted graphs
with the given number of vertices (n) and degree (d)

 4

Dia. = 2
Ave. Dis. = 75/45
 = 1.67..

(n, d) = (10, 3)

全点対間最短経路（APSP）

All-pairs- 
shortest-
path

What's Order/Degree problem ?

By considering the calculation node as “vertex” and the network
wiring as “edge”, the network topology is represented as a graph
The Order/Degree problem is to find the graph with the smallest
diameter and average distance from a set of unweighted graphs
with the given number of vertices (n) and degree (d)

 5

Graph Golf

International competition for the Order/Degree problem
Held by the National Institute of Informatics since 2015
Provides problems with combinations of n and d every year
The problems in 2019 are (n, d) = (50, 4), (512, 4), (512, 6),
(1Ki, 4), (1726, 30), (4855, 15), (9344, 6), (64Ki, 6), (100K, 8),
(100K, 16), (1M, 32)

http://research.nii.ac.jp/graphgolf/

K = 1,000, Ki = 1,024, M = 1,000,000

 6

How to solve Order/Degree problem ?

Metaheuristic algorithms such as
Simulated Annealing are often used
To execute the algorithms, it is 
necessary to calculate APSP many times
Moreover, the computational cost of the
APSP algorithm is very high !!

e.g. For a problem (n, d) = (1M, 32), the time  
required for one APSP is about 37 hours by the  
methods based on BFS on Intel Gold 6126

 7

Objective and a part of results

Our previous research provides an APSP algorithm based on  
Breadth-First Search (BFS-APSP) [2019nakao]
BFS-APSP is parallelized by OpenMP + MPI

https://github.com/mnakao/APSP/
You can download programs from

This research introduces another APSP algorithm based on 
adjacency matrix (ADJ-APSP) [2017mori], and compares BFS-APSP
ADJ-APSP is parallelized by MPI + OpenMP for multi-core cluster
ADJ-APSP is parallelized by MPI + CUDA for GPU cluster

BFS-APSP (about 37 hours) → ADJ-APSP (3,880 sec.) →
ADJ-APSP by OpenMP+MPI on 64 CPUs x 12 Cores (6.77 sec.) →
ADJ-APSP by CUDA+MPI on 128 GPUs (0.28 sec.)

 8

Agenda

Background
BFS-APSP
ADJ-APSP
Performance
Summary

 9

Serial BFS-APSP
BFS can be used to find the distances from one vertex to others
APSP can be obtained by BFS for all vertices
Top-down approach is used

The computational complexity of applying BFS to one vertex is
proportional to the number of edges; O(nd).
When it is repeated n times, the computational complexity of BFS-
APSP is O(n^2d)

1. 2. 3.

 10

Parallel BFS-APSP
Multiple BFSs are performed simultaneously using MPI, and one
BFS is divided into threads using OpenMP
For MPI,
Starting points are assigned to each MPI process evenly
Thus, the maximum number of processes is n
Communication time is small because only the information (diameter and
average distance) of each process is collected at the end of the program

For OpenMP,
Each OpenMP thread searches not-visited vertices
OpenMP requires exclusive control to update list of the not-visited vertices

 11

Comparison with Graph500
Graphs in Graph500
Kronecker graph where vertices with a large degree and
vertices with a low degree are mixed
Like social networks

Graphs in Order/Degree problem
Regular graph（正則グラフ）where degree d is constant
Like industrial products

From these conditions, we have confirmed that the
top-down approach performs better than the hybrid
approach[Beamer 2012] used in Graph500

 12

Agenda

Background
BFS-APSP
ADJ-APSP
Performance
Summary

 13

Serial ADJ-APSP(1/3)
Let A be an adjacency matrix of a graph
If the value of an element a_{i, j} in A^k is 1, it means that the
vertex i can reach the vertex j within k hops

(n, d) = (10, 3)

adjacency list

 14

Serial ADJ-APSP(1/3)
Let A be an adjacency matrix of a graph
If the value of an element a_{i, j} in A^k is 1, it means that the
vertex i can reach the vertex j within k hops

(n, d) = (10, 3)

for(int i=0;i<n;i++)
 A[0][i] |= A[2][i] | A[3][i] | A[5][i];

 15

Serial ADJ-APSP(2/3)

As k is increased in increments of 1, the value of k is the diameter
when all elements are 1
Every time k is increased from 1 to the diameter, the average
distance can be obtained by summing all the elements whose value
for element a_{i, j} in A^k is 0 divided by number of elements

 16

Serial ADJ-APSP(3/3)

←__builtin_popcountll() or _mm_popcnt_u64()

← logical sum operation 
 (the most time-consuming part)

 17

Parallel ADJ-APSP

Divide "A" vertically

"A" can be calculated independently by MPI
The maximum number of processes is (n/E),
E is number of bit in one elements (we use
uint64_t, E = 64)

 18

Parallel ADJ-APSP

Same as BFS-APSP, communication
time is very small

OpenMP

OpenMP

 19

Parallel ADJ-APSP for GPU

in CUDA

__popcnt() in CUDA Math API

 20

Comparison between BFS-APSP and ADJ-APSP

BFS-APSP ADJ-APSP

Computational
complexity O(n^2d) O(n^2dD/E)

Maximum number of
MPI processes n n/E

OpenMP exclusive
control

critical
directive (none)

For GPU △
Communication MPI_Allreduce() x 2 for scalar

n: vertices
d: degree
D: diameter
E: bits in elements (64)

In general, the value of D of graphs in Order/Degree problem
is small due to the small-world effect.

 21

Agenda

Background
BFS-APSP
ADJ-APSP
Performance
Summary

 22

Experiment environment
The K computer in RIKEN R-CCS Cygnus in CCS, Univ. of Tsukuba

For OpenMP+MPI versions For OpenMP+MPI versions
For CUDA+MPI version

 23

Serial algorithm

(n, d, D) = (50, 4, 5), (1726, 30, 3), and (64Ki, 6, 9)
ADJ-APSP is always faster than BFS-APSP
The computation time is 8.08 to 29.49 times faster

The K computer Cygnus system

 24

Parallel algorithm by OpenMP

(n, d, D) = (64Ki, 6, 9) and (1M, 32, 5)
The number of processes is fixed at 1
ADJ-APSP is always faster than BFS-APSP
19.62 to 32.34 times faster at the maximum number of threads
(1M, 32, 5) on Cygnus
BFS-APSP(1core) : approx. 37hours → ADJ-APSP(1core) : 3,880sec.
ADJ-APSP(1core) : 3,880sec. → ADJ-APSP(12cores) : 475sec.

The K computer Cygnus system

 25

Parallel algorithm by OpenMP

Above graphs show the speed increase for previous graphs
Parallelization efficiency of ADJ-APSP is higher than that of BFS-APSP
This is because BFS-APSP requires exclusive control between threads,
whereas ADJ-APSP does not perform such a control

Cygnus systemThe K computer

 26

Parallel algorithm by OpenMP+MPI

The number of threads is set to the maximum value
The maximum number of processes in (64Ki, 6, 9) and (1M, 32, 5) is
65,536 and 1,000,000 for BFS-APSP and 1,024 and 15,625 for ADJ-
APSP, respectively
ADJ-APSP is faster than BFS-APSP for the same number of processes
(1M, 32, 5) on cygnus
ADJ-APSP(1CPU) : 475sec. → ADJ-APSP(64CPU) : 6.77 sec.

The K computer Cygnus system

 27

Parallel algorithm by OpenMP+MPI

BFS-APSP may be faster than ADJ-APSP
in a large number of processes

The K computer

The number of threads is set to the maximum value
The maximum number of processes in (64Ki, 6, 9) and (1M, 32, 5) is
65,536 and 1,000,000 for BFS-APSP and 1,024 and 15,625 for ADJ-
APSP, respectively
ADJ-APSP is faster than BFS-APSP for the same number of processes
(1M, 32, 5) on cygnus
ADJ-APSP(1CPU) : 475sec. → ADJ-APSP(64CPU) : 6.77 sec.

 28

Parallel algorithm by CUDA+MPI

(64Ki, 6, 9) : 0.77sec. (1CPU, 12Threads) → 0.06 sec. (1GPU) : x 12.6
(1M, 32, 5) : 475 sec. (1CPU, 12Threads) → 28.7 sec. (1GPU) : x 16.5
(1M, 32, 5) : 28.7sec.(1GPU) → 0.28 sec. (128GPUs)
Achieve 101.10-fold performance improvements

 29

Parallel algorithm by CUDA+MPI

(64Ki, 6, 9) : 0.77sec. (1CPU, 12Threads) → 0.06 sec. (1GPU) : x 12.6
(1M, 32, 5) : 475 sec. (1CPU, 12Threads) → 28.7 sec. (1GPU) : x 16.5
(1M, 32, 5) : 28.7sec.(1GPU) → 0.28 sec. (128GPUs)
Achieve 101.10-fold performance improvements

Since the number of elements of each
column in the adjacency matrix is 8
(=65536/E/128 = 8), the condition where
coalesce access occurs isn't met

 30

Agenda

Background
BFS-APSP
ADJ-APSP
Performance
Summary

 31

Summary

We parallelize BFS-APSP and ADJ-APSP using MPI+OpenMP for Order/
Degree problem
ADJ-APSP has a better performance in the serial algorithm and
threaded algorithm than BFS-APSP on a single CPU
approx. 37hours (BFS, 1core) → 3,880sec. (ADJ, 1core) → 475sec.
(ADJ, 12cores)

However, because the maximum number of processes of BFS-APSP is
larger than that of ADJ-APSP, the performance of BFS-APSP on
multiple CPUs may be higher using MPI
We achieved further speedup by parallelizing ADJ-APSP using GPUs
28.7sec. (ADJ, 1GPU) → 0.28 sec.(ADJ, 128GPUs)

