Introduction of fast APSP algorithm and
optimization algorithms for grid graphs

Masahiro Nakao Maaki Sakai.” Yoshiko Hanada'
(TRIKEN R-CCS, ¥Kansai University)

Graph Golf Workshop in CANDAR'19@Nagasaki, Japan. 2019-11-26

Obtain ASPL and diameter

. ® Metaheuristic such as SA and GA are
‘ Initialize Graph
often used
‘ Mutate Graph ® [o evaluate a graph, its diameter and

ASPL are needed which are calculated

Evaluate Graph : :
by APSP algorithm many times

No ® |t is very important to calculate APSP
at high-speed

Yes
‘ Update Graph

e.g. For a problem (n, d) = (1M, 32), the time

No required for one APSP is about 37 hours by the
method based on Breadth-First Search (BFS)

Yes on Intel Gold 6126
‘ Output Graph

Our APSP algorithms

® Qur previous research provides a parallel APSP algorithm based on
BFS (BFS-APSP) [1-3]

® This presentation introduces a new parallel APSP algorithm based
on adjacency matrix (ADJ-APSP) [4-5]. The original ADJ-APSP was

developed by Ryuhei Mori [O]

(
You can download our program from

https://github.com/mnakao/APSP/

_

[1] R ELIED. MPI/OpenMPitFllic &K 7' Z 7 &t #1E & Simulated Annealing FA\\fcOrder/Degree®E D —f#%, HPCHZE . 2018.
[2] Masahiro Nakao et. al. A Method for Order/Degree Problem Based on Graph Symmetry and Simulated Annealing with MPI/
OpenMP Parallelization, HPC Asia 2019.

[3] HEEILIFH. KFEOrder/DegreeMRBICK T 2 &EL 7L T) X ADMFL & FBIRFREBEDFHE. STETEHEERFHNE, 20109.

[4] FEEILIEH. Order/DegreeIBD O DEH R LY T 7ICHK T DR NBERERE 7L TY X LDHF{L. HPCHFE . 2019.

[5] Masahiro Nakao et al. Parallelization of All-Pairs-Shortest-Path Algorithms in Unweighted Graph, HPC Asia 2020.

[6] https://github.com/ryuhei-mori/graph_ASPL

ADJ-APSP(1/3)

® | et A be an adjacency matrix of a graph
® |[f the value of an element a _{i, j} in A%k 1s 1, it means that the
vertex | can reach the vertex | within k hops

for(int i=0;i<n;i++)
A[O][] [= AL2]0] | ALSILT | ALSILT

(n, d) = (10, 3) \/ 1
A adlst A

0000000001 235 000070171701
0000000010 | 568 0707700010
$» 0000000100 | 034 0000077101
*0000001000 029 700000117101
0000010000 | 279 70700101700
$» 0000100000 | 017 0070100011
0001000000 | 189 717010000170
0010000000 | 458 0710770000
0100000000 | 167 01770000170
1000000000 [346 1007077000

ADJ-APSP(2/3)

1

A adilst A A A
0000000001 235 00007101101 1707170111111 1711717111111
0000000010 568 0170771700010 7117110001 1 1111111111
0000000100 034 0000011101 1707170711101 11117111111
0000001000 029 7000001101 1700777171101 1177171111111
0000010000 279_>1010010100_>1111111101_>1111111111
0000100000 017 0070100011 0111111111 7111111111
0001000000 189 71701000010 11171111010 1111111111
0010000000 458 071710717170000 17111110111 1111111111
0100000000 167 0177000010 1711117170010 1111111111
1000000000 346 100707171000 1177171011111 111171711111

® As Kk is increased in increments of 1, the value of k is the diameter
when all elements are |
® Every time K is increased from 1 to the diameter, the total distance
IS obtained by summing all the elements whose value is O
® ASPL is calculated by dividing the total distance by the number
of elements

ADJ-APSP(3/3)

1 function SERIAL AD] APSP(vertices, nodes)
2 diameter « 1

3 distance « nodes*(nodes—1)

4 elements « [nodes/E]

5 A, B « INITIALIZE(nodes, elements)
6 for k=1... nodes—1

7 fori=1 ... nodes

8 for n € neighbors(i, vertices)

9 f";;j.:l."- ele};ﬂ}‘n‘ts ATl — logical sum operation
1(1)]G] < BLIG | Aln]0] (the most time-consuming part)
12 num < 0
13 for i=1 ... nodes _ _
14 for j=1 ... elements We have developed Serial, Multi-threads
15 num < num+POPCNT(B[i][j]) GPU, Multi-GPUs versions
16
17 if(num = nodes*nodes) break
18
19 SWAP(A, B)
20 diameter++
21 distance « distance+(nodesxnodes—num)

22 average_distance « distance/((nodes—1)«nodes)
23 return diameter, average_distance

Experiment environment

Cygnus system in Univ. of Tsukuba

CPU Intel Xeon Gold 6126 (12Cores, 2.6GHz) X 2 L
Memory | DDR4 (128GB/s x 2, 192GB) g
GPU NVIDIA Tesla V100 (900GB/s, 32GB) X 4 §: .
Network | InfiniBand HDR100 (12.5GB/s) X 4 v

Software | intel/19.0.3, mvapich/2.3.1, cuda/10.1

® The Cygnus system is provided by Interdisciplinary Computational Science
Program in the Center for Computational Sciences, University of Tsukuba

® Computing resources such as Cygnus and Oakforest-PACS can be used
for free

® This entry is held around mid-December

Result (Change from BFS to ADJ)

Speed to calculate APSP for graph with (1M, 32)
Intel Xeon Gold 6126 2.6GHz

150000
134,300 sec (37 hours)

120000

90000
X 35.5

TIME (sec.)

60000

30000

3,780 sec.

BFS ADJ

Result (Multi-threads)

Speed to calculate APSP for graph with (1M, 32)
Intel Xeon Gold 6126 2.6GHz (12 cores)

4000 3,780 sec.

3500
3000
2500

x 8.0
2000

TIME (sec.)

1500

1000

474 sec.

500

0
ADJ Multi-threads

Result (GPU)

Speed to calculate APSP for graph with (1M, 32)
Intel Xeon Gold 6126 2.6GHz (12 cores) -> NVIDIAV100 &

TIME (sec.)

500

400

300

200

100

474 sec.

Multi-threads

X 16.5

28.7 sec.

GPU

Result (Multi-GPUs)

Speed to calculate APSP for graph with (1M, 32)
Intel Xeon Gold 6126 2.6GHz (12 cores) -> NVIDIAV100 x 128 ¢

30 28.7 sec.

25

20

x 101.1
15

TIME (sec.)

10

0.28 sec.
GPU Multi-GPUs

Summary Of course, when using graph symmetry,

the calculation time can be reduce more greatly.

Speed to calculate APSP for graph with (1M, 32)
Intel Xeon Gold 6126 2.6GHz (12 cores) -> NVIDIA V100 x 128

1000000

100000
134,300# -> 0.28% (x 500,000)
10000

1000
100
10
1

0.1 =

Multi-threads GPU Multi-GPUs

TIME (sec.)

Graph symmetry

® The algorithm is inherited from mine for general graph last year [1-3]
® Examples of the graph symmetry with (W, H, D, R) = (6, 6, 4, 2)

NN NZA

g=1 (normal graph) g=2 g=4

® The variable g is the number of groups (g must be 1 or 2 or 4)
® |f a graph is rotated by 360/g degrees, the connection relationship

between the vertex and edge becomes the original one

Edge exchange based on 2-opt

Initialize Graph

Mutate Graph

Evaluate Graph

Update Graph

Output Graph

Perform 2-opt method while maintaining symmetry

In case of g=4
(1)

(1) Randomly select two edges from all the edges
(2) Select edges symmetrically related to (1)

(3) Apply the 2-opt method to above edges
each other

Results

1.0 B o=2

H o=4
0.8
0.6
0.4
0.2
0.0

ASPL Gap Ratio
18]}9(

d4r2 d6ér3 d8r4 d4r2 d6r3 d8rd d4r2 d6r3 d8r4
w10h10 w20h20 w100h100

® The vertical axis is the ASPL Gap Ratio when the result of g=1 is 1.0
® The larger the value of g is, the smaller the ASPL Gap is
® | arger problems tend to have larger performance differences
® The results show that graph symmetry is also useful in grid graphs

