Linkage of XcalableMP and Python languages
for high productivity on HPC cluster system

- Application to Graph Order/degree Problem -

Masahiro Nakao1, Hitoshi Murai,1 Taisuke Boku,2 Mitsuhisa Sato’

1. RIKEN Advanced Institute for Computational Science
2.Center for Computational Sciences University of Tsukuba

PGAS-EIl Workshop, Jan. 31th, 2018@Tokyo, Japan

Background

e XcalableMP (XMP) is a directive-based language extension

for HPC cluster systems

® Provide directives for PGAS programming
® Based on C and Fortran (C++ on the table)
® Designed by PC Cluster consortium

® http://xcalablemp.org

¢ Omni compiler
® Reference implementation for XMP
® Developed by RIKEN AICS and University of Tsukuba
® Source-to-Source compiler
® Support : The K computer, Intel Xeon Phi Cluster, Cray machines, ...
® Open source software
® http://omni-compiler.org

Example of XcalableMP programming

\

int a[MAX]; Define execution unit and
#pragma xmp nodes p[3] data distribution
#pragma xmp template t[MAX]

#pragma xmp distribute t[block] onto p
#pragma xmp align a[i] with t[i]

Int main(){
#pragma xmp loop on tfi] uf
for(int i = O; i <MAX: i++) N
ali] = foo();

Parallelize loop statement]

Global address space

Private address space

Execution unit

Example of XcalableMP programming

integer a(MAX) Define execution unit and |
I$xmp nodes p(3) data distribution
I$xmp template t(MAX) g

1I$xmp distribute t(block) onto p
1I$Sxmp align a(i) with t(i)

1I$xmp loop on t(i)

doi=1,MAX — { barallelize loop statement]
a(i) = fool(i) L
enddo

Global address space

Private address space

Execution unit

Objective

® The purpose of a PGAS language is to develop parallel applications
with both high productivity and performance

® To do this, we think that a linking of a PGAS language and
other languages is very important

® Different programming languages are good at different things

D

® Why do we choice Python ?

Development function for a linkage of XMP and Python

® Python has a lot of packages for fields of science (e.g. SciPy and
NumPy)

® There are many users of python

Agenda from this slide

® Linkage of XMP and a C/Fortran program using MPI library
® Linkage of XMP and Python
® Application to Graph Order/degree Problem

® Summary

Agenda from this slide

® Linkage of XMP and a C/Fortran program using MPI library

1. Call an XMP program from a C/Fortran program using MPI library
2. Call a C/Fortran program using MPI library from an XMP program

Why these function are needed ?

1. While using XMP makes the code simple, performance may be slightly
worse than MPI.
We think that if necessary, it is important to use XMP and MPI properly
In an application to achieve both high productivity and performance

2. Many other languages (e.g. Python, perl, ruby and so on) have MPI

library. By creating a linkage XMP function with MPI, XMP can also link
with other languages

Omni compiler

4 ™
Base language (C or Fortan) Base language +
+ XcalableMP directive Backend B Calling runtime —J» Object file
function I
user code (a.c) Runtime library I *
LOmni Compiler g Execution binary

(a.out)

$ xmpcc a.c -0 a.out '

Add linkage functions

® A user code with XMP directives is translated to a parallel code
with runtime calls of Omni compiler's runtime library

® The runtime library is implemented in C and MPI
® T[he translated parallel code is compiled by a native compiler
® e.g. GNU, Intel, PGI, Cray, and so on

Call XMP program from a program using MPI

® Implement following functions (which are defined in xmp.h)

Language | Return Value Type | Function Description
XMP/C void xmp_init(MPI_Comm) - p
X MP/F (None) xmp_init(Integer) Initialize XMP environment
XMP/C void xmp_finalize(void) T .
Y MP/F (None) xmp._finalize() Finalize XMP environment
A program using MPI (mpi.c) XMP program (xmp.c)
#include <xmp.h> | void call_xmp(}
#include <mpi.h> #pragma xmp nodes p[3]

int main(int argc, char **argv){
MPI_Init(&argc, &argv);
$ xmpcc xmp.c -c

xmp_init(MP1_ COMM_WORLD); $ mpicc mpi.c -c
call_xmp(); $ xmpcc xmp.o mpi.o -0 a.out

xmp_finalize(); $ mpirun -np 3 a.out

Call a program using MPI from XMP program

® Implement following functions (which are defined in xmp.h)

Language | Return Value Type | Function Description
XMP,C void xmp_init_mpi(int®, char™") g ,
XMP/F (None) xmp_init_mpi() Initialize MPI environment
):MP".C MPL Comm xmp_get_mp¥_comm('vo1d} Create MPI communicator from XMP node set
XMP/F Integer xmp_get_mpi_commy()
XMP/C void xmp_finalize_mpi(void) T .
Ty Finalize MPI env ent
XMP/F (None) xmp._finalize_mpi() inalize environmen

XMP program (xmp.c)

#include <xmp.h>
#include <mpi.h>
#pragma xmp nodes p[3]

int main(int argc, char **argv){
xmp_init_mpi(&argc, &argv);
MP|_Comm comm = xmp_get_mpi_comm();
call_mpi(comm);

A program using MPI (mpi.c)

#include <mpi.h>

_ |void call_mpi(MPI_Comm comm){
int rank, size;

MPI_Comm_rank(comm, &rank);
MPI_Comm_size(comm, &size);

$ xmpcc xmp.c -C

xmp_finalize _mpi();

$ mpicc mpi.c -c

$ xmpcc xmp.o mpi.o -0 a.out
$ mpirun -np 3 a.out

Agenda from this slide

® Linkage of XMP and a C/Fortran program using MPI library
® Linkage of XMP and Python
® Application to Graph Order/degree Problem

® Summary

Linkage of XMP and Python

1 : Parallel Python program calls a parallel XMP program

® This concept is the same as that of XMP and a program with MPI

4 N\ @ A
@® Python
° O A
g XMP) @ . ®

2 : Serial Python program calls a parallel XMP program

” ‘y’t
Y o

p
@ Python
® XVP

\

Parallel Python program calls a parallel XMP program

Python program (a.py) XMP program (xmp.c)
import xmp -+ void call xmp(long a1[3],
from mpidpy import MPI long a2[3])

#pragma xmp nodes p[3]

lib = xmp.Lib("xmp.so")
args = ([1,2,3], [4,5,6])
job =lib.cal(MPI.COMM_WORLD, "call_xmp", args) ——

® xmp.Lib() sets "shared library" which is developed in XMP program
® xmp.Lib.call() executes an XMP program

® xmp.Lib.call() calls "xmp_init()" and "xmp_finalize()" internally

r N\ @ > @
@ Python ® P $ xmpcc -fPIC -shared xmp.c -0 xmp.so
® X\P $ mpirun -np 3 python a.py

N) @ X

Serial Python program calls a parallel XMP program

Python program (a.py) XMP program (xmp.c)
import xmp —»{void call xmp(long a1[3],
long a2[3]\
lib = xmp.Lib("xmp.so") #pragma xmp nodes p[3]
args = ([1,2,3], [3,4,9]) ;

job = lib.spawn(3, "call xmp", args)

a)
® Python | @ > @
@ XMP ®
O

® xmp.Lib.spawn() method creates new processes and they work as an

XMP program in parallel $ xmpcc -fPIC -shared xmp.c -0 xmp.so
$ mpirun -np 1 python a.py

Serial Python program calls a parallel XMP program

Python program (a.py) XMP program (xmp.c)
import xmp —»{void call xmp(long a1[3],
long a2[3]\
lib = xmp.Lib("xmp.so") #pragma xmp nodes p[3]
args = ([1,2,3], [3,4,9]) ;

job = lib.spawn(4, "call_xmp", args, async=True)
// other work

job.wait()
a)
® Python | @ > @
@ XMP ®
O

® xmp.Lib.spawn() method creates new processes and they work as an

XMP program in parallel $ xmpcc -fPIC -shared xmp.c -0 xmp.so
$ mpirun -np 1 python a.py

Implementation of xmp.Lib.spawn()

() user . Intermediate Xmp
® Python program xmp.Lib.spawn program program
k‘ XMP y O > ® & J > @
1 ’ ° >®
3
The reason why Intermediate program is created is for ® i _
passing argument between user program and xmp program 4 5

Intermediate program

1. User Program calls xmp.le.spawng) from mpidpy import MP|
2. xmp.Lib.spawn() creates Intermediate program import numpy

automatically and executes Intermediate program from ctypes import *
using the spawn method of mpi4py

i = MPLI. _
3. xmp.Lib.spawn() broadcasts the arguments to con Comm.Get_parent()

arg0 = numpy.zeros(2)

Intermediate program using mpi4py.Bcast() comm.Bcast(arg0, root=0)
4. Intermediate program receives the arguments lib = CDLL("xmp.s0")
5. Intermediate program executes an XMP program I!b'xmp—'n't—py(comm'pny())
_ _ lib.call_xmp(arg0.ctypes)
(This procedure is the same as parallel run style) lib.xmp_finalize()

comm.Disconnect()

Agenda from this slide

® Linkage of XMP and a C/Fortran program using MPI library
® Linkage of XMP and Python
® Application to Graph Order/degree Problem

® Summary

What is Graph Order/degree problem ?

® Minimizes the "diameter"” and "average shortest path length (ASPL)" among vertices in
an undirected graph with "a given number of vertices and degrees".
® The problem is useful for designing low latency interconnection networks
® Although the smallest diameter and ASPL can be calculated from the given vertices
and degrees [V.G.Cerf 1974], we don't know how edges and vertices are connected

® Examples of the graph with vertices = 10 and degree = 3
. ® N O

‘ -~ - ! . .

Diameter=3, ASPL=1.89 (Random) Diameter=2, ASPL=1.67 (Optimal)

What is Graph Order/degree problem ?

® Minimizes the "diameter"” and "average shortest path length (ASPL)" among vertices in
an undirected graph with "a given number of vertices and degrees".
® The problem is useful for designing low latency interconnection networks
® Although the smallest diameter and ASPL can be calculated from the given vertices
and degrees [V.G.Cerf 1974], we don't know how edges and vertices are connected

® Examples of the graph with vertices = 10 and degree = 3

g 3
2 |

. o - 1 =

Diameter=3, ASPL=1.89 (Random) Diameter=2, ASPL=1.67 (Optimal)

Graph Golf@National Institute of Informatics

® National Institute of Informatics has held the Graph Golf competition since 2015

for Graph Order/degree problem.
® http://research.nii.ac.jp/graphgolf

® Some combinations of vertices and degrees are provided

Combination of vertices and degrees of General Graph Category in 2017

Number of vertices (n) || 32 | 256 | 576 | 1344 4896 | 9344 88128 98304 | 100000 | 100000
Number of degrees (d) 51 18 | 30 30 24 10 12 10 32 64

Vertices=32, Degrees=5 Vertices=256, Degrees=18

Graph Golf

The O0AFe Aired PRN e Tampe T ias

Problem statement

Updet= 2172223

pefiritior

The OO aiegres Soc BAern wath prnrnaters morat a4 -1 3 EroR Arth mrsmum aumeler oser
all undirected grophs with the rumber of vartices = mand degree 3 4.1 wo o more grapns
take the min mum dismeior, ¢ groph with minim a7 average shoriest pata lergth [ASIY)
ave: oll the graphs with the mrimurr disrcter muat ke faaad,

T neorndepes neldew ow oo idwesdi vl o Stee’ edie Ferseth 1, Do Us sae e o abuve,
neenna vhs viaiae XN ATANAIMANRNNAL HK IPST SLACe, KP2UNSTHe SngIns af
the ndgec < rin Mashatian dictance, Hore 2 "gric® impiar tha; (1) the vertices ars kkewed 2t
integer coordinates but are not neca2sarily connedtad te its Mdptert vertices; and (2) the
edgrs must aet run diagonoly while being o lowed "o changs its d rection st the grid pomts.

Usage of XMP

® A python program for the Graph Golf competition is available on the official website
® http://research.nii.ac.jp/graphgolf/py/create-random.py (About 100 lines)
® The python program outputs follow from the number of vertices and degrees.
® |nitial graph with random edges

® Calculation of diameter and ASPL

® The graph is saved in PNG format
® Python "networkx" package is used

® https://github.com/networkx/

Diameter=3, ASPL=1.89 (Random)
® [ssues

® The python program doesn't search the smallest diameter and ASPL

® To calculate diameter and ASPL, it requires a significant amount of time

We create an XMP program to solve the issues.

Graph Order/degree solver in Python + XMP

® Implementation policy
® The existing python program generates an initial solution and saves a final solution
® XMP program searches an optimal solution (includes calculates diameter and ASPL)

® Optimization algorithm in XMP uses Simulated Annealing

Python import Xmp Python XMP/C
: Create initial solution =3 |nitialize parameters
lib = xmp.Lib("xmp.so") v
args = (vertices, degrees, edge) — G"‘”"‘“i‘""‘ e 1
lib.cal(MPI.COMM_WORLD, "xmp_sa", args)t— Compute energy
¥
o T
XMP/C |void xmp_sa(int vertices, , int degrees, —
int edge[vertices*degrees/2][2]{ —wrI
#pragma xmp loop on t[i] ‘_@No
for(int i=0;i<vertices;i++){
. /I Calculate diameter and ASPL Coon
}
#pragma xmp reduction(max:diameter) No *
#pragma xmp reduction(+:ASPL) @
Qutput final solution =

Evaluation

® COMA cluster system at University of Tsukuba

cPu Intel Xeon-E5 2670v2 2.8 GHz x 2 Sockets
Memory ~ DDR3 18660MHz 59.7GB /s 64GB
Network InfiniBand FDR 7TGB/s

intel /16.0.2, intelmpi/5.1.1, Omni Compiler 1.2.1

Software
Pvthon 2.7.9, networkx 1.9

® Elapse time to calculate diameter and ASPL

® Problem size is vertices=9344, degrees=10

vvaryty of Takd
@ Cente]for ComputationallSciences)

Combination of vertices and degrees of General Graph Category in 2017

Number of vertices (n) || 32 | 256 | 576 | 1344 | 4896|| 9344 | 88128 98304 | 100000 | 100000
Number of degrees (d) 51 18 | 30 30 24 10 12 10 32 64

Performance results

® flat-MPI
® 20 processes in a single compute node

® The python code using networkx package requires 148.83 sec.

1000 = - s o - — 100
8 123.17 B Execution Time U
v 100 61.60 o 0.75 =
~ -+ Parallel Efficiency Q
Q 24.64 %
g 12.33 —
— 10 6.17 050 m
S 3.09 g
'-g 1.55)
o 1 0.78 025 3
u>-<l 0.40 - < 921
W 013 = times faster
0.1 . = 0.00
1 2 4 10 20 40 80 160 320 640 1280

Number of execution units

Conclusion

® Since different programming languages are good at different things, we
developed the linkage function for XMP and Python
® Parallel python program calls a parallel XMP program
® Serial python program spawns new processes which executes a parallel
XMP program
® Development of an application of the Graph Order/degree problem using the
linkage function
® As a result of using 1280 CPU cores, it achieved 921 times faster than using
1 CPU core.
® Python networkx package is used to create an initial graph and save a final
graph
® By mixing Python and XMP, the parallel application is developed easily.

