
Linkage of XcalableMP and Python languages
for high productivity on HPC cluster system  

- Application to Graph Order/degree Problem -

PGAS-EI Workshop, Jan. 31th, 2018@Tokyo, Japan

1. RIKEN Advanced Institute for Computational Science
2.Center for Computational Sciences University of Tsukuba

Masahiro Nakao, Hitoshi Murai, Taisuke Boku, Mitsuhisa Sato 1 2 11

2

Background

XcalableMP (XMP) is a directive-based language extension  
for HPC cluster systems
Provide directives for PGAS programming
Based on C and Fortran (C++ on the table)
Designed by PC Cluster consortium
http://xcalablemp.org  

Omni compiler
Reference implementation for XMP
Developed by RIKEN AICS and University of Tsukuba
Source-to-Source compiler
Support : The K computer, Intel Xeon Phi Cluster, Cray machines, ...

Open source software
http://omni-compiler.org

int a[MAX];
#pragma xmp nodes p[3]
#pragma xmp template t[MAX]
#pragma xmp distribute t[block] onto p
#pragma xmp align a[i] with t[i]

int main(){
#pragma xmp loop on t[i]
 for(int i = 0; i <MAX; i++)
 a[i] = foo(i);

Example of XcalableMP programming

3

Define execution unit and  
data distribution

Parallelize loop statement

p[0] p[1] p[2]

Private address space

Global address space

Execution unit

integer a(MAX)
!$xmp nodes p(3)
!$xmp template t(MAX)
!$xmp distribute t(block) onto p
!$xmp align a(i) with t(i)

!$xmp loop on t(i)
 do i = 1, MAX
 a(i) = foo(i)
enddo

Example of XcalableMP programming

4

Define execution unit and  
data distribution

Parallelize loop statement

p(1) p(2) p(3)

Private address space

Global address space

Execution unit

Objective

5

The purpose of a PGAS language is to develop parallel applications 
with both high productivity and performance

To do this, we think that a linking of a PGAS language and 
other languages is very important

Different programming languages are good at different things

Development function for a linkage of XMP and Python

Why do we choice Python ?

Python has a lot of packages for fields of science (e.g. SciPy and  
NumPy)

There are many users of python

Agenda from this slide

6

Linkage of XMP and a C/Fortran program using MPI library

Linkage of XMP and Python

Application to Graph Order/degree Problem

Summary

Agenda from this slide

7

Linkage of XMP and a C/Fortran program using MPI library
1. Call an XMP program from a C/Fortran program using MPI library

2. Call a C/Fortran program using MPI library from an XMP program

Why these function are needed ?
1. While using XMP makes the code simple, performance may be slightly

worse than MPI. 
We think that if necessary, it is important to use XMP and MPI properly
in an application to achieve both high productivity and performance 

2. Many other languages (e.g. Python, perl, ruby and so on) have MPI
library. By creating a linkage XMP function with MPI, XMP can also link
with other languages

Omni compiler

8

A user code with XMP directives is translated to a parallel code 
with runtime calls of Omni compiler's runtime library
The runtime library is implemented in C and MPI
The translated parallel code is compiled by a native compiler
e.g. GNU, Intel, PGI, Cray, and so on

user code (a.c)

$ xmpcc a.c -o a.out
(a.out)

Add linkage functions

Call XMP program from a program using MPI

9

#include <xmp.h>
#include <mpi.h>

int main(int argc, char **argv){
 MPI_Init(&argc, &argv);

 xmp_init(MPI_COMM_WORLD);
 call_xmp();
 xmp_finalize();

void call_xmp(){
#pragma xmp nodes p[3]
 :

A program using MPI (mpi.c) XMP program (xmp.c)

$ xmpcc xmp.c -c
$ mpicc mpi.c -c
$ xmpcc xmp.o mpi.o -o a.out
$ mpirun -np 3 a.out

Implement following functions (which are defined in xmp.h)

Call a program using MPI from XMP program

10

Implement following functions (which are defined in xmp.h)

#include <xmp.h>
#include <mpi.h>
#pragma xmp nodes p[3]

int main(int argc, char **argv){
 xmp_init_mpi(&argc, &argv);
 MPI_Comm comm = xmp_get_mpi_comm();
 call_mpi(comm);
 xmp_finalize_mpi();

#include <mpi.h>

void call_mpi(MPI_Comm comm){
 int rank, size;
 MPI_Comm_rank(comm, &rank);
 MPI_Comm_size(comm, &size);

XMP program (xmp.c) A program using MPI (mpi.c)

$ xmpcc xmp.c -c
$ mpicc mpi.c -c
$ xmpcc xmp.o mpi.o -o a.out
$ mpirun -np 3 a.out

Agenda from this slide

11

Linkage of XMP and a C/Fortran program using MPI library

Linkage of XMP and Python

Application to Graph Order/degree Problem

Summary

Linkage of XMP and Python

12

1 : Parallel Python program calls a parallel XMP program

This concept is the same as that of XMP and a program with MPI

Python

XMP

2 : Serial Python program calls a parallel XMP program

Python

XMP

Parallel Python program calls a parallel XMP program

13

xmp.Lib() sets "shared library" which is developed in XMP program

xmp.Lib.call() executes an XMP program

xmp.Lib.call() calls "xmp_init()" and "xmp_finalize()" internally

import xmp
from mpi4py import MPI

lib = xmp.Lib("xmp.so")
args = ([1,2,3], [4,5,6])
job = lib.call(MPI.COMM_WORLD, "call_xmp", args)

void call_xmp(long a1[3],
 long a2[3]){
#pragma xmp nodes p[3]
 :

Python program (a.py) XMP program (xmp.c)

$ xmpcc -fPIC -shared xmp.c -o xmp.so
$ mpirun -np 3 python a.py

Python

XMP

Serial Python program calls a parallel XMP program

14

import xmp

lib = xmp.Lib("xmp.so")
args = ([1,2,3], [3,4,5])
job = lib.spawn(3, "call_xmp", args)

void call_xmp(long a1[3],
 long a2[3]){
#pragma xmp nodes p[3]
 :

Python program (a.py) XMP program (xmp.c)

$ xmpcc -fPIC -shared xmp.c -o xmp.so
$ mpirun -np 1 python a.py

Python

XMP

xmp.Lib.spawn() method creates new processes and they work as an

XMP program in parallel

Serial Python program calls a parallel XMP program

15

import xmp

lib = xmp.Lib("xmp.so")
args = ([1,2,3], [3,4,5])
job = lib.spawn(4, "call_xmp", args, async=True)
// other work
job.wait()

Python program (a.py) XMP program (xmp.c)

$ xmpcc -fPIC -shared xmp.c -o xmp.so
$ mpirun -np 1 python a.py

Python

XMP

void call_xmp(long a1[3],
 long a2[3]){
#pragma xmp nodes p[3]
 :

xmp.Lib.spawn() method creates new processes and they work as an

XMP program in parallel

Implementation of xmp.Lib.spawn()

16

1. User program calls xmp.Lib.spawn()
2. xmp.Lib.spawn() creates Intermediate program

automatically and executes Intermediate program
using the spawn method of mpi4py

3. xmp.Lib.spawn() broadcasts the arguments to 
Intermediate program using mpi4py.Bcast()

4. Intermediate program receives the arguments
5. Intermediate program executes an XMP program 

(This procedure is the same as parallel run style)

1

from mpi4py import MPI
import numpy
from ctypes import *

comm = MPI.Comm.Get_parent()
arg0 = numpy.zeros(2)
comm.Bcast(arg0, root=0)
lib = CDLL("xmp.so")
lib.xmp_init_py(comm.py2f())
lib.call_xmp(arg0.ctypes)
lib.xmp_finalize()
comm.Disconnect()

Intermediate program

2
3

4 5

Python

XMP

user
program xmp.Lib.spawn Intermediate

program
xmp

program

The reason why Intermediate program is created is for
passing argument between user program and xmp program

Agenda from this slide

17

Linkage of XMP and a C/Fortran program using MPI library

Linkage of XMP and Python

Application to Graph Order/degree Problem

Summary

What is Graph Order/degree problem ?

18

Minimizes the "diameter" and "average shortest path length (ASPL)" among vertices in  
an undirected graph with "a given number of vertices and degrees".

The problem is useful for designing low latency interconnection networks

Although the smallest diameter and ASPL can be calculated from the given vertices

and degrees [V.G.Cerf 1974], we don't know how edges and vertices are connected

Examples of the graph with vertices = 10 and degree = 3

Diameter=3, ASPL=1.89 (Random) Diameter=2, ASPL=1.67 (Optimal)

What is Graph Order/degree problem ?

19

Diameter=3, ASPL=1.89 (Random) Diameter=2, ASPL=1.67 (Optimal)

1

2

1

2
3

Minimizes the "diameter" and "average shortest path length (ASPL)" among vertices in  
an undirected graph with "a given number of vertices and degrees".

The problem is useful for designing low latency interconnection networks

Although the smallest diameter and ASPL can be calculated from the given vertices

and degrees [V.G.Cerf 1974], we don't know how edges and vertices are connected

Examples of the graph with vertices = 10 and degree = 3

Graph Golf@National Institute of Informatics

20

National Institute of Informatics has held the Graph Golf competition since 2015  
for Graph Order/degree problem.

http://research.nii.ac.jp/graphgolf

 Some combinations of vertices and degrees are provided

Vertices=32, Degrees=5 Vertices=256, Degrees=18

Combination of vertices and degrees of General Graph Category in 2017

Usage of XMP

21

A python program for the Graph Golf competition is available on the official website

http://research.nii.ac.jp/graphgolf/py/create-random.py (About 100 lines)

The python program outputs follow from the number of vertices and degrees.

Initial graph with random edges

Calculation of diameter and ASPL

The graph is saved in PNG format

Python "networkx" package is used

https://github.com/networkx/

Diameter=3, ASPL=1.89 (Random)

We create an XMP program to solve the issues.

Issues

The python program doesn't search the smallest diameter and ASPL

To calculate diameter and ASPL, it requires a significant amount of time

Graph Order/degree solver in Python + XMP

22

import xmp
 :
lib = xmp.Lib("xmp.so")
args = (vertices, degrees, edge)
lib.call(MPI.COMM_WORLD, "xmp_sa", args)

void xmp_sa(int vertices, , int degrees,  
 int edge[vertices*degrees/2][2]){
 :
#pragma xmp loop on t[i]
 for(int i=0;i<vertices;i++){
 : // Calculate diameter and ASPL
 }
#pragma xmp reduction(max:diameter)
#pragma xmp reduction(+:ASPL)

Implementation policy
The existing python program generates an initial solution and saves a final solution

XMP program searches an optimal solution (includes calculates diameter and ASPL)

Optimization algorithm in XMP uses Simulated Annealing
Python

XMP/C

Evaluation

23

COMA cluster system at University of Tsukuba

Elapse time to calculate diameter and ASPL

Problem size is vertices=9344, degrees=10

Combination of vertices and degrees of General Graph Category in 2017

921
times faster

Performance results

24

Number of execution units

flat-MPI

20 processes in a single compute node

The python code using networkx package requires 148.83 sec.

Conclusion

25

Since different programming languages are good at different things, we

developed the linkage function for XMP and Python

Parallel python program calls a parallel XMP program

Serial python program spawns new processes which executes a parallel

XMP program

Development of an application of the Graph Order/degree problem using the

linkage function

As a result of using 1280 CPU cores, it achieved 921 times faster than using

1 CPU core.

Python networkx package is used to create an initial graph and save a final

graph

By mixing Python and XMP, the parallel application is developed easily.

