
Implementing Lattice QCD Application
with XcalableACC Language

on Accelerated Cluster

IEEE Cluster2017@Hawaii, Sep. 8th

Masahiro Nakao, Hitoshi Murai, Hidetoshi Iwashita,
Akihiro Tabuchi, Taisuke Boku, Mitsuhisa Sato

RIKEN Advanced Institute for Computational Science, Japan
Graduate School of Systems and Information Engineering, University of Tsukuba, Japan

Center for Computational Sciences, University of Tsukuba, Japan

†

‡ $

† †

‡ †

$
‡

†

Background
Accelerated cluster (cluster equipped with accelerators)
High computing performance
High energy efficiency

2

__global__ void kernel(int a[MAX], int llimit, int ulimit)
{ ... }
 :
int main(int argc, char *argv[]){
 MPI_Int(&argc, &argc);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 dx = MAX/size;
 llimit = rank * dx;
 ulimit = (rank != size-1)? ulimit = llimit + dx : MAX;
 kernel <<< N_GRID, N_BLOCK >>> (a, llimit, ulimit);

 MPI_Send(a, ... , MPI_COMM_WORLD);
 MPI_Recv(a, ... , MPI_COMM_WORLD, &status);

Motivation

3

Complex programming on accelerated cluster
MPI+CUDA is often used, can fully exploit computational performance
Hard to distribute data/work in MPI, and offload them in CUDA

MPI+OpenACC has emerged as an alternative to MPI+CUDA.
But, its approach still faces a programming issue due to MPI.

Create a new kernel for GPU

Divide data and calculations

Send and receive local data by using
primitive MPI functions

XcalableACC (XACC)
A new programming model for accelerated clusters,
called XcalableACC (XACC)

To reduce programming cost
Directive-based language extension based on C and Fortran (C++
on the table)
Multi-level parallelism (inter-node/intra-node/accelerators)

Orthogonal integration of XcalableMP (XMP) and OpenACC
XACC = XMP + OpenACC + XACC extensions

4

XMP Programming model for distributed
memory system instead of MPI

OpenACC Use of accelerators instead of CUDA

XACC extensions Communication among accelerators,  
and so on

Objectives

5

Compare the productivity and performance of XACC with
those of MPI+CUDA and MPI+OpenACC

In previous study[1], we used some micro-benchmarks
In this study, target application is the Lattice QCD code 
on accelerated cluster (64 compute nodes, 256 GPUs)

[1] Masahiro Nakao et al, “XcalableACC: Extension of XcalableMP PGAS Language Using
OpenACC for Accelerator Clusters,” in Proceedings of WACCPD, 2014, pp. 27‒36.

Agenda

6

1. Background
2. Overview of XMP, OpenACC, XACC
3. Lattice QCD code using XACC
4. Productivity and performance of XACC, MPI+CUDA, and

MPI+OpenACC
5. Summary

XcalableMP (XMP)

7

int main(){
 double a[MAX], res = 0;
#pragma xmp nodes p[4]
#pragma xmp template t[MAX]
#pragma xmp distribute t[block] on p
#pragma xmp align a[i] with t[i]

#pragma xmp loop on t[i] reduction(+:res)
 for(int i=0; i<MAX; i++)
 res += a[i];
 :

int main(){
 double a[MAX], res = 0;

 for(int i=0; i<MAX; i++)
 res += a[i];
 :

Data distribution

Parallelize loop & reduction

Serial code in C Parallell code in XMP/C

Directive-based language extension based on C and Fortran
for distribute memory system (C++ on the table)

Add XMP directives to a serial code
The specification is designed by PC cluster consortium

http://xcalablemp.org

OpenACC

8

int main(){
 double a[MAX], res = 0;
#pragma acc enter data copyin(a)

#pragma acc parallel loop reduction(+:res)
 for(int i=0; i<MAX; i++)
 res += a[i];
 :

int main(){
 double a[MAX], res = 0;

 for(int i=0; i<MAX; i++)
 res += a[i];
 :

Offload data

Parallelize loop & reduction

Serial code in C Parallell code in OpenACC/C

Directive-based language extension based on C, C++, and
Fortran

Loops and regions of code to be offloaded from a host CPU to
an attached accelerator (GPU, MIC, and so on)

https://www.openacc.org

XcalableACC (XACC)

9

int main(){
 double a[MAX], res = 0;
#pragma xmp nodes p[4]
#pragma xmp template t[MAX]
#pragma xmp distribute t[block] on p
#pragma xmp align a[i] with t[i]
#pragma acc enter data copyin(a)

#pragma xmp loop on t[i] reduction(+:res) acc
#pragma acc parallel loop reduction(+:res)
 for(int i=0; i<MAX; i++)
 res += a[i];
 :

Parallell code in XACC/C

XACC facilitates cooperation between XMP and OpenACC
XMP is used to distribute data and work on nodes
OpenACC is used to deal with an accelerator on each node

・・

1
Host

ACC

1
Host

ACC

・・

node #1

Distributed array a[]

1
node #0

XcalableACC (XACC)

10

int main(){
 double a[MAX], res = 0;
#pragma xmp nodes p[4]
#pragma xmp template t[MAX]
#pragma xmp distribute t[block] on p
#pragma xmp align a[i] with t[i]
#pragma acc enter data copyin(a)

#pragma xmp loop on t[i] reduction(+:res) acc
#pragma acc parallel loop reduction(+:res)
 for(int i=0; i<MAX; i++)
 res += a[i];
 :

Parallell code in XACC/C

・・

1
Host

ACC

1
Host

ACC

・・

node #1

Distributed array a[]

1

2
2 2

node #0

XACC facilitates cooperation between XMP and OpenACC
XMP is used to distribute data/work on nodes
OpenACC is used to deal with an accelerator on each node

XcalableACC (XACC)

11

int main(){
 double a[MAX], res = 0;
#pragma xmp nodes p[4]
#pragma xmp template t[MAX]
#pragma xmp distribute t[block] on p
#pragma xmp align a[i] with t[i]
#pragma acc enter data copyin(a)

#pragma xmp loop on t[i] reduction(+:res) acc
#pragma acc parallel loop reduction(+:res)
 for(int i=0; i<MAX; i++)
 res += a[i];
 :

Parallell code in XACC/C

・・

1
Host

3
ACC

1
Host

3
ACC

・・

node #1

Distributed array a[]

1

2

3

2 2

node #0

XACC facilitates cooperation between XMP and OpenACC
XMP is used to distribute data and work on nodes
OpenACC is used to deal with an accelerator on each node

The order of loop directives does not matter

reduction

Memory model in XACC

12

XMP transfers data among host memories on different nodes
OpenACC transfers data between host and accelerator memories  
on the same node
XACC extension transfers data among accelerator memories and 
between host and accelerator memories on different nodes

・・

Host

ACC

Host

ACC

・・ XMP
OpenACC
XACC extensions

node #0 node #1

Distributed array
XMP and XACC support
reflect (neighborhood comm.),
reduction, bcast, global-copy,
put, get

XACC = XMP + OpenACC + XACC extensions

Omni compiler

13

Source-to-source compiler for directive-based languages
Support XMP, XACC, OpenACC directives
Any OpenACC compiler can be used as a backend compiler

Open source software

https://omni-compiler.org

Agenda

14

1. Background
2. Overview of XMP, OpenACC, XACC
3. Lattice QCD code using XACC
4. Productivity and performance of XACC, MPI+CUDA, and

MPI+OpenACC
5. Summary

Overview of Lattice QCD

15

One of the most important applications in high-performance
computing
Lattice QCD is a discrete formulation of QCD (Quantum
Chromodynamics)

Describe the strong interaction among “quarks” and “gluons”
Quark is a species of elementary particles
Gluon is a particle that works between quarks

Lattice QCD is formulated on a four-dimensional  
lattice (Time and XYZ axes)

Periodic boundary condition in all the direction

Lattice QCD mini-application

16

Lattice QCD codes in XACC, MPI+CUDA, and MPI+OpenACC based
on an existing Lattice QCD mini-application (http://research.kek.jp/people/

matufuru/Research/Programs/index.html)
By High Energy Accelerator Research Organization, Japan
Written in C language, SLOC (Source Lines of Code) is 842
Implemented by extracting the main kernel of the Bridge++ (SLOC
> 75,000), which is a real-world application for lattice gauge
theories including QCD (http://bridge.kek.jp/Lattice-code/index_e.html)

Overview of algorithm

17

To solve many times a linear equation for a sparse matrix that represents
the interaction between the quark and gluon fields.

do while(not converged ?)
 T = WD(U,P)
 V = WD(U,T)
 pap = dot(V,P)
 cr = rr/pap
 X = axpy(X, cr, P)
 R = axpy(R, -cr, V)
 rr = norm(R)
 bk = rr/rrp
 P = scal(bk, P)
 P = axpy(P, 1.0, R)
 rrp = rr
enddo

WD() is the Wilson-Dirac operator
Conjugate Gradient method

U is a gluon.
Other uppercase characters are quarks

Main kernel (most costly)
Stencil calculation
Calculates how the quarks interact with  
each other in the gluon filed

I will explain how to parallelize WD().
Please refer to our paper about other functions.

Declare distributed array

18

Quark_t v[NT][NZ][NY][NX];
#pragma xmp template t[NT][NZ]
#pragma xmp nodes p[PT][PZ]
#pragma xmp distribute t[block][block] onto p
#pragma xmp align v[i][j][*][*] with t[i][j]
#pragma xmp shadow v[1][1][0][0]
#pragma acc enter data copyin(v)

Host

ACC

node p[0][0]

1
Host

ACC

node p[0][NZ-1]

1
・
・

1. Define 2-dim. process grid.
 Dimension T and Z of arrays are distributed.

3. Offload the distributed array with shadow to
 accelerator memory

2. Add shadow area to the distributed array for  
 stencil calculation

Declare distributed array

19

Host

ACC

node p[0][0]

1
Host

ACC

node p[0][NZ-1]

12 2
・
・

Quark_t v[NT][NZ][NY][NX];
#pragma xmp template t[NT][NZ]
#pragma xmp nodes p[PT][PZ]
#pragma xmp distribute t[block][block] onto p
#pragma xmp align v[i][j][*][*] with t[i][j]
#pragma xmp shadow v[1][1][0][0]
#pragma acc enter data copyin(v)

1. Define 2-dim. process grid.
 Dimension T and Z of arrays are distributed.

3. Offload the distributed array with shadow to
 accelerator memory

2. Add shadow area to the distributed array for  
 stencil calculation

Declare distributed array

20

Host

ACC

node p[0][0]

1
Host

ACC

node p[0][NZ-1]

12 2

33

・
・

Quark_t v[NT][NZ][NY][NX];
#pragma xmp template t[NT][NZ]
#pragma xmp nodes p[PT][PZ]
#pragma xmp distribute t[block][block] onto p
#pragma xmp align v[i][j][*][*] with t[i][j]
#pragma xmp shadow v[1][1][0][0]
#pragma acc enter data copyin(v)

1. Define 2-dim. process grid.
 Dimension T and Z of arrays are distributed.

3. Offload the distributed array with shadow to
 accelerator memory

2. Add shadow area to the distributed array for  
 stencil calculation

Neighborhood communication

21

Before calling WD(), XMP reflect directive updates shadow area on accelerator
#pragma xmp reflect(v) width(/periodic/1:1,/periodic/1:1,0,0) orthogonal acc
WD(..., v); // Stencil calculation

Host

ACC

node p[0][0]

Host

ACC

node p[0][NZ-1]

・
・

Host

ACC

node p[0][1]

・・

Neighborhood communication

22

Before calling WD(), XMP reflect directive updates shadow area on accelerator
#pragma xmp reflect(v) width(/periodic/1:1,/periodic/1:1,0,0) orthogonal acc
WD(..., v); // Stencil calculation

Host

ACC

node p[0][0]

Host

ACC

node p[0][NZ-1]

・
・

Host

ACC

node p[0][1]

・・

Parallelize Wilson-Dirac operator

23

Before calling WD(), XMP reflect directive updates own halo region on acc.

void WD(..., Quark_t v[NT][NZ][NY][NX])
{
 …
#pragma xmp loop (iz,it) on t[it][iz]
#pragma acc parallel loop collapse(4) …
 for(it = 0; it < NT; it++){
 for(iz = 0; iz < NZ; iz++){
 for(iy = 0; iy < NY; iy++){
 for(ix = 0; ix < NX; ix++){
 …

1. XMP loop directive parallelizes the following loop statement on each node
2. OpenACC loop directive also parallelizes the following loop statement on each

accelerator

#pragma xmp reflect(v) width(/periodic/1:1,/periodic/1:1,0,0) orthogonal acc
WD(..., v);

Host

ACC

node p[0][0]

Host

ACC

node p[0][1]

Agenda

24

1. Background
2. Overview of XMP, OpenACC, XACC
3. Lattice QCD code using XACC
4. Productivity and performance of XACC, MPI+CUDA, and

MPI+OpenACC
5. Summary

How do we evaluate productivity ?

25

A parallel code is often based on an existing serial code
This code changes are likely to trigger program bugs

Delta Source Lines of Codes (Delta-SLOC) metric [2]
Indicates how many lines the code changed from a serial code to a  
parallel code
Sum of three components: how many lines are added, deleted and
modified
When the Delta-SLOC is small, the possibility of program bugs will
be small

[2] Andrew I. Stone et al, “Evaluating coarray fortran with the cgpop miniapp,” in Proceedings of the
Fifth Conference on Partitioned Global Address Space Programming Models (PGAS), October 2011.

Productivity results

26

- 81%

- 28%

SLOC of the serial code is 842

By using XACC,
a programmer develops
a parallel code by adding
and modifying 160 lines
to the serial code

Breakdown of the results(1/2)

27

For accelerator
CUDA requires large code changes
Add new kernel code for GPU
Modify and delete existing code

OpenACC and XACC can reuse most of existing codes
Basically, only add its directives

Breakdown of the results(2/2)

28

For distributed memory system
MPI requires a lot of modifications which change to convert  
global indices into local indices
MPI also requires to add shadow area and communicate among
neighborhood processes to update the shadow area
XACC can easily perform them by adding its directives

Performance evaluation environment

29

CPU/Memory Intel Xeon-E5 2680v2 2.8 GHz / DDR3 SDRAM 128GB 59.7GB/s x 2

GPU/Memory NVIDIA Tesla K20X / GDDR5 6GB 250GB/s x 4

Network InfiniBand Mellanox Connect-X3 4xQDR x 2rails 8GB/s

HA-PACS/TCA cluster system located at University of Tsukuba

Omni XACC compiler 1.1
Omni OpenACC compiler 1.1
Intel 16.0.2
CUDA 7.5.18
MVAPICH2 2.1

64 compute nodes, 256 GPUs

Performance result

30

Data size is 32x32x32x32 (T x Z x Y x X axes) with strong scaling
Each process deals with a single GPU, 4 processes run on a single compute node

The performance of XACC is 100 - 104% of that of MPI+OpenACC, and
95 - 99% of that of MPI+CUDA

be
tt
er

Almost the same
performance !!

Discussion for performance result (1/3)

31

Why is the performance of XACC a little better than that of
MPI+OpenACC ?

The reason is due to how to update shadow area
The shadow updating process requires pack/unpack operations for non-
contiguous regions.

The operations of XACC implementation are executed by XACC runtime
While XACC runtime is written in CUDA, MPI+OpenACC implementation
uses OpenACC to perform the pack/unpack operations

Why was the performance difference
caused between CUDA and OpenACC ?

another question !

Discussion for performance result (2/3)

32

Why is the performance of XACC a little worse than that of
MPI+CUDA ? (Why is OpenACC worse than CUDA ?)

The reason is due to how to use GPU threads in loop statements
In the MPI+CUDA implementation, loop iterations are assigned to GPU
threads explicitly in a cyclic manner by the programmer.
In the XACC and OpenACC implementations, an implementation-
dependent manner by an OpenACC compiler

In the Omni OpenACC compiler, loop iterations are assigned to GPU
threads by a threadblock in a block manner, and then are also
assigned to them by a vector in a cyclic manner

#pragma acc parallel loop ...
for(int t=0;t<NT;t++)
 for(int z=0;z<NZ;z++)
 for(int y=0;y<NY;y++)
 for(int x=0;x<NX;x++){

int i = IDXV(threadIdx.x, blockIdx.x, blockDim.x);

while(ivx < NX*NY*NZ*NT){
 ivx += blockDim.x * gridDim.x;
 :
}

CUDA XACC or OpenACC

Discussion for performance result (3/3)

33

With the gang clause with the static argument proposed in
the OpenACC specification version 2.0, programmers can
determine how to use GPU threads to some extent,

Omni OpenACC compiler does not yet support it.
This is a future work

In PGI compiler, performance decreases

#pragma acc parallel loop gang(static:1)
for(int t=0;t<NT;t++)
 for(int z=0;z<NZ;z++)
 for(int y=0;y<NY;y++)
 for(int x=0;x<NX;x++){

Related Works

34

X10 (by IBM) and Chapel (by Cray) are parallel languages
Support NVIDIA GPU (CUDA implementation)
While X10 and Chapel are entirely new languages, XACC is a
language extension based on C and Fortran
XACC can reuse many parts of existing codes in C and Fortran

Kokkos, RAJA, Alpaka, and Phalanx are C++ template libraries
for heterogeneous architectures

They don't require any particular extensions of C++ compilers itself
An XACC compiler requires some extensions to analyze its
directives
Instead, new features can be added to XACC without being
restricted by functions of the original language

Summary

35

Objectives
To develop applications on accelerated cluster in ease, we have
designed the XACC language
To evaluate performance and productivity of XACC, we implement
the Lattice QCD code

Results
Delta-SLOC of XACC is quite smaller than those of MPI+CUDA
and MPI+OpenACC
The performance of XACC is almost the same as those of
MPI+CUDA and MPI+OpenACC on the accelerated cluster
(64nodes, 256GPUs)

