
HPC Challenge Award Competition Class 2 at SC14

XcalableMP and XcalableACC for Productivity and
Performance in HPC Challenge Award Competition

Class 2 at SC14

Masahiro Nakao1,2,a) Hitoshi Murai1 Hidetoshi Iwashita1 Takenori Shimosaka1

Akihiro Tabuchi3 Taisuke Boku2,3 Mitsuhisa Sato1,2,3

1. RIKEN Advanced Institute for Computational Science, Japan
2. Center for Computational Sciences, University of Tsukuba, Japan
3. Graduate School of Systems and Information Engineering, University of Tsukuba, Japan
a) masahiro.nakao@riken.jp

Summary
We present XcalableMP [1–4] implementations of High-performance Linpack (HPL), Fast Fourier Transform (FFT), STREAM, and

RandomAccess on the K computer [5]. Moreover, we also present XcalableACC [6, 7] implementations of HPL, FFT, STREAM, and
the Himeno Benchmark [8] as an additional benchmark on HA-PACS/TCA [9], which is a GPU cluster.

The highlights of this submission are as follows:
• Table 1 shows the SLOC (source lines of code) of the implementations.
• Table 2 shows experimental environments.
• Table 3 and Table 4 show performance summaries.

Table 1 Source lines of code of the implementations

HPL FFT STREAM RandomAccess Himeno
XcalableMP 313 204 69 253 -
XcalableACC 343 [TBD] 84 - 213
Reference 8,800 787 329 938 365

Table 2 Experimental environments of the K computer and HA-PACS/TCA

Name The K computer HA-PACS/TCA
Top500/Green500 1st / 6th (June, 2011) 134th / 3rd (November, 2013)

CPU & Memory
SPARC64 VIIIfx 2.0 GHz, 8 Cores, 128 GFlops, Ivy Bridge E5-2680v2 2.8 GHz, 10 Cores, 224 GFlops,
1 CPU/Node, 2 CPUs/Node,
DDR3 SDRAM 16 GB, 64 GB/s DDR3 SDRAM 128 GB, 119.4 GB/s (= 59.7 GB/s × 2 CPUs)

Network Torus fusion six-dimensional mesh/torus network, InfiniBand QDR x 2 rails, 8GB/s5 GB/s x 10

Compier & Library Fujitsu C/Fortran Compiler K-1.2.0-15, Fujitsu MPI GCC 4.7.2, MVAPICH2 2.0, CUDA 6.5, OpenBLAS 0.2.12,
K-1.2.0-15, Fujitsu SSLII K-1.2.0-15, FFTE 6.0 FFTE 6.0

GPU - NVIDIA K20X, 1.31/3.95 TFlops (DP/SP),
GDDR5 SDRAM 6 GB, 250 GB/s, 4GPUs/Node

Table 3 Performance summary of XcalableMP on the K computer

Benchmark #Nodes Performance (/peak)
HPL 16,384 970.97 TFlops (46.30%)
FFT 36,864 79.45 TFlops (1.68%)
STREAM 82,944 3,582.50 TB/s (67.49%)
RandomAccess 16,384 254.20 GUPS (-)

Table 4 Performance summary of XcalableACC on HA-PACS/TCA

Benchmark #Nodes (GPUs) Performance (/peak)
HPL 32 (128 GPUs) 7,102.36 GFlops (4.22%)
FFT [TBD] [TBD]
STREAM 32 (128 GPUs) 7,238.10 GB/s (20.21%)
Himeno 32 (128 GPUs) 6,870.98 GFlops (1.36%)

The remainder of the present paper is structured as follows. Section I introduces XcalableMP and XcalableACC programming models.
Section II describes an evaluation environment. Section III presents implementations and performances of benchmarks using XcalableMP
on the K computer. Section IV presents implementations and performances of benchmarks using XcalableACC on HA-PACS/TCA. Sec-
tion V summarizes the present paper.

1



HPC Challenge Award Competition Class 2 at SC14

1. Proposed Programming Models

1.1 XcalableMP
XcalableMP [1–4], XMP for short, is a directive-based language extension for distributed memory systems, which has been designed

by XMP specification working group of the PC cluster consortium [10]. It allows users to develop parallel applications and to tune its
performance easily. A part of the design is based on experiences of High Performance Fortran [11, 12] and Coarray Fortran [13].

The features of XMP are as follows:
• XMP supports typical parallelization under “global-view memory model,” and enables parallelizing the original sequential code

using minimal modification with simple directives.
• XMP also includes coarray features for “local-view memory model.”
• XMP is defined as an extension for familiar languages, such as C and Fortran, to reduce code-rewriting and educational costs.
• XMP is defined to mix XMP and OpenMP directives for multi-thread programming.

#pragma xmp template t(0:N-1)

index 0 N-1

template t

index 0 N-1

#pragma xmp nodes p(4)

#pragma xmp distribute t(block) onto p

double a[N];

#pragma xmp align a[i] with t(i)

N/4-1 N/2-1 3*N/4-1

a[]

index 0 N-1N/4-1 N/2-1 3*N/4-1

node p(1) node p(2)

node p(1) node p(3) node p(4)node p(2)

node p(3) node p(4)

node p(1) node p(3) node p(4)node p(2)

Fig. 1 Definition of a distributed array in XcalableMP [3]

#pragma xmp loop on t(i)

#pragma omp parallel for

for(int i=0;i<N;i++){

  a[i] = ... 

Fig. 2 Loop parallelization in XcalableMP [3]

#pragma xmp shadow a[1:1]

#pragma xmp reflect (a)

a[]

node p(1)

node p(2)

node p(3)

node p(4)

Fig. 3 Definition and synchronization of a halo region in XcalableMP [3]

XMP defines a distributed array by using a virtual index set called a “template.” Fig. 1 and Fig. 2 show an example of an XMP dis-
tributed array and parallelization of a loop statement. A template directive defines a template t, the virtual indexes of which are from 0 to
N - 1. A node directive defines a node set p, which consists of four nodes. A distribute directive distributes the template t onto the node
p in a block manner, which means the same number of blocks are distributed. XMP also provides cyclic, block-cyclic, and user-defined
distributions. A align directive defines the distributed array a[] and aligns it with the template t. Each node allocates reasonable memory
for the distributed array a[]. In Fig. 2, a loop directive parallelizes a loop statement depending on the template t. For example, if N is
16, node p(1) handles the iterations indexes from 0 to 3. A that time, the OpenMP parallel directive also parallelizes the loop statement
parallelized by the XMP directive. In this case, the order of the XMP loop directive and the OpenMP parallel directive does not matter.

In order to develop stencil applications easily, which are most commonly found in computer simulations, XMP provides shadow and
reflect directives. These directives can be used to define a halo region for a distributed array and synchronize it between neighborhood
nodes. Fig. 3 shows an example of how to use the directives. A shadow directive defines a halo region in both sides of a distributed array
a[]. A reflect directive synchronizes data of the defined halo region onto the neighborhood nodes.

#pragma xmp template t(0:8)

#pragma xmp nodes p(3)

#pragma xmp distribute t(block) onto p

#pragma xmp align [i] with t(i) :: a, b

...

#pragma xmp gmove

   a[0:5] = b[2:5];

a[] b[]
node p(1)

node p(2)

node p(3)

Fig. 4 XcalableMP gmove directive [3]

#pragma xmp bcast (e) from p(2)

Fig. 5 XcalableMP bcast directive

#pragma xmp reduction (+:f)

Fig. 6 XcalableMP reduction directive

array_name[start:length]:[node_num]

Fig. 7 XcalableMP coarray feature

Besides, XMP provides various communication directives. In Fig. 4, a gmove directive enables programmers to access distributed
arrays using global indexing, where five elements from b[2] to b[6] are copied to five elements from a[0] to a[4]. In Fig. 5, a bcast di-
rective performs broadcast communication from a specified node, where the local variable e stored on node p(2) is broadcasted. In Fig. 6,
A reduction directive performs a reduction operation among nodes, where the reduction directive calculates the total value of the local
variable f stored on all nodes. Fig. 7 is an example of coarray in XMP C language. Fig. 7 means length elements from array name[start]
to array name[start+length-1] located on a node specified by node num are referred.

2



HPC Challenge Award Competition Class 2 at SC14

1.2 XcalableACC
XcalableACC [6,7], XACC for short, enables programmers to mix XMP and OpenACC [14] directives in order to develop applications

that can use accelerator clusters with ease. In XACC, programmers can use both XMP and OpenACC directives seamlessly. Additionally,
XACC also provides directives to transfer data among accelerator memories directly.

1 double a[N];
2 #pragma xmp template t(0:N−1)
3 #pragma xmp nodes p(4)
4 #pragma xmp distribute t(block) onto p
5 #pragma xmp align a[i] with t(i)
6 ...
7 #pragma acc data copy(a)
8 {
9 #pragma xmp loop on t(i)

10 #pragma acc parallel loop
11 for(int i=0;i<N;i++){
12 a[i] = ... ;

Fig. 8 Loop parallelization in XcalableACC

1 double a[N];
2 #pragma xmp template t(0:N−1)
3 #pragma xmp nodes p(4)
4 #pragma xmp distribute t(block) onto p
5 #pragma xmp align a[i] with t(i)
6 #pragma xmp shadow a[1:1]
7 ...
8 #pragma acc data copy(a)
9 {

10 for(int n=0;n=NITER;n++){
11 ...
12 #pragma xmp reflect (a) acc
13 #pragma xmp loop on t(i)
14 #pragma acc parallel loop
15 for(int i=1;i<N−1;i++){
16 ... = a[i−1] + a[i+1];

Fig. 9 Definition and synchronization of
a halo region using shadow and reflect
directive in XcalableACC

1 double a[N];
2 #pragma xmp template t(0:N−1)
3 #pragma xmp nodes p(4)
4 #pragma xmp distribute t(block) onto p
5 #pragma xmp align a[i] with t(i)
6 #pragma xmp shadow a[1:1]
7 ...
8 #pragma acc data copy(a)
9 {

10 #pragma xmp reflect init (a) acc
11 for(int n=0;n=NITER;n++){
12 ...
13 #pragma xmp reflect do (a) acc
14 #pragma xmp loop on t(i)
15 #pragma acc parallel loop
16 for(int i=1;i<N−1;i++){
17 ... = a[i−1] + a[i+1];

Fig. 10 Definition and synchronization of
a halo region using shadow, reflect init,
and reflect do directives in XcalableACC

Fig. 8 shows an example of a loop parallelization in XACC. In lines 1 to 5, XMP directives define the distributed array a[]. This
process is the same as XMP programming model in Fig. 1. In line 7, the OpenACC data directive transfers the distributed array a[] to
accelerator memory. In line 9, the XMP loop directive parallelizes the loop on each node. At that time, the OpenACC parallel directive
with loop clause in line 10 also parallelizes the loop statement parallelized by the XMP directives. In this case, the order of the XMP
loop directive and the OpenACC parallel directive does not matter.

XACC also provides directives to transfer data among accelerator memories directly by adding acc clause to existing XMP commu-
nication directives. Fig. 9 shows an example of an exchange a halo region. In line 12, the reflect directive with acc clause performs
synchronization the halo region on accelerator memory among neighborhood nodes.

Besides, the reflect directive is often called repeatedly with the same condition in a loop statement. In addition, the reflect directive
internally performs some initialization, for example, to set neighborhood nodes and to calculate offsets for data transfers. However, the
initialization only needs to be done once. In order to remove the unnecessary multiple initializations, we propose dividing the reflect di-
rective into two directives, an reflect init directive and an reflect do directive, similar to MPI persistent communication. The reflect init
directive performs the initialization, and the reflect do directive performs communication. Of course, this division will also be effective
for the reflect directive for host data. Fig. 10 shows an example using the reflect init and reflect do directives. In line 10, the reflect init
directive with acc clause performs initialization the halo region of the array a[] on accelerator memory. In line 13, the reflect do directive
with acc clause performs synchronization the halo region among neighborhood nodes.

#node 1 #node 2

Global Address / Work Unit

Accelerator Memory

Host Memory

Accelerator Memory

Host Memory

#node 1 #node 2

Global Address / Work Unit

Host Memory Host Memory

・・・
XcalableMP

OpenACC

XcalableMP with 
acc clause

XcalableMP Memory Model XcalableACC Memory Model

・・・ ・・・

・・・

Fig. 11 XcalableMP and XcalableACC memory models

Fig. 11 shows XMP and XACC memory models. In XACC memory model, XMP directives are used to transfer data among host
memories, OpenACC directives are used to transfer data between host memory and accelerator memory, and XMP directives with acc
clause are used to transfer data among accelerator memories directly.

3



HPC Challenge Award Competition Class 2 at SC14

2. Evaluation Environment

2.1 Omni Compiler
We have been developing the Omni compiler [15] that supports XMP, OpenACC, and OpenMP directives. The Omni com-

piler translates C or Fortran source code with these directives and generates parallel code. The Omni compiler is available at
http://omni-compiler.org as an open-source software.

2.2 Machines
In order to evaluate the performance of HPCC benchmarks, we used two machines: the K computer [5] (Fig. 12) and HA-PACS/TCA

[9] (Fig. 13). HA-PACS/TCA is equipped with the NVIDIA K20X GPU. While the K computer is used to evaluate the XMP program-
ming model, HA-PACS/TCA is used to evaluate the XACC programming model. Table 2 shows the specification of the two machines.
Additionally, Fig. 14 shows the detail of the computation node of HA-PACS/TCA. Each computation node has two CPUs and four GPUs.
The memory size of each GPU is 6 GB, and the memory size of host memory is 128GB. The bandwidth of each GPU GDDR5 memory
is 250 GB/s, the bandwidth between GPU memory and host memory is 8GB/s, and the bandwidth between host memory and CPU is
119.4 GB/s (= 59.7 GB/s × 2 CPUs).

Fig. 12 The K computer [16]

Fig. 13 HA-PACS/TCA [9]

PCIe Gen2 x 16 : 8GB/s

DDR3 : 128GB, 119.4 GB/s

              (= 59.7 GB/s x 2 CPUs)

GDDR5: 6GB, 250 GB/s

Memory SDRAM

CPU

Ivy Bridge

GPU K20X

QPI

Memory SDRAM

CPU

Ivy Bridge

GPU K20X

Fig. 14 Computation node in HA-PACS/TCA

2.3 How to count source lines of code
Table 1 summarizes the source lines of code (SLOC) of all implementations. All SLOC is excluded comments and blank lines, but

included a validation operation and a printing performance result.

4



HPC Challenge Award Competition Class 2 at SC14

3. Implementation and Performance of benchmarks using XcalableMP on the K computer

3.1 High-performance Linpack in XcalableMP

3.1.1 Overview
We implemented an HPL algorithm written in XMP C language. The SLOC is 313.

3.1.2 Differences from the implementation of last year

p(1,1) p(1,2) p(1,3) p(1,4)

p(2,1) p(2,2) p(2,3) p(2,4)

p(3,1) p(3,3) p(3,3) p(3,4)

p(4,1) p(4,2) p(4,3) p(4,4)

#pragma xmp nodes p(4,4)

...

#pragma bcast (a) from p(*,1) on p(*,:)

Fig. 15 Broadcast operation using two-dimensional node set (Last year)

col(1)

row(1)

col(2)

row(1)

col(3)

row(1)

col(4)

row(1)

col(1)

row(2)

col(2)

row(2)

col(3)

row(2)

col(4)

row(2)

col(1)

row(3)

col(2)

row(3)

col(3)

row(3)

col(4)

row(3)

col(1)

row(4)

col(2)

row(4)

col(3)

row(4)

col(4)

row(4)

#pragma xmp nodes p(4,4)

#pragma xmp nodes col(4) = p(*,:) 

#pragma xmp nodes row(4) = p(:,*)

...

#pragma bcast (a) from col(1) on col(:)

Fig. 16 Broadcast operation using split node set (This year)

Last year, we used a two-dimensional node set p to perform broadcast operation as Fig. 15. While the “*” means duplicate executing,
the “:” represents all node in the dimension. For example, node p(1,1) transfers data to only own row nodes: p(1,2), p(1,3), and p(1,4).
However, the XMP runtime internally creates new communicators using MPI Comm split() every time in the bcast directive. In order to
remove the unnecessary MPI Comm Split() operations, we create one-dimensional node set col and row from the two-dimensional node
set p in advance. Fig. 16 shows an example of new broadcast operation by using the split node set. For example, col(1) consists of p(1,1),
p(2,1), p(3,1), and p(4,1). In Fig. 16, the all col(1) transfer data to own row nodes. The node set row is also used to transfer data to only
own column nodes. Thus, the node sets col and row are very useful to implement an HPL algorithm.

3.1.3 Implementation
� Block-cyclic distribution

A coefficient matrix A[][] is distributed to each node in a block-cyclic manner, as hpcc-1.4 HPL. In the following code, a template
directive declares a two-dimensional template t, and a node directive declares a two-dimensional node set p. A distribute directive
distributes the template t onto P×Q nodes in the same block size where NB is the block size. Finally, an align directive aligns A[][]
with the template t. Fig. 17 shows the block-cyclic distribution in the following code. Note that the order of the template indexes is
based on Fortran conventions. Therefore, in XMP C language, the order of i and j in align directive is reversed, shown in line 5 and
Fig. 17.

1 double A[N][N];
2 #pragma xmp template t(0:N−1, 0:N−1)
3 #pragma xmp nodes p(P,Q)
4 #pragma xmp distribute t(cyclic(NB), cyclic(NB)) onto p
5 #pragma xmp align A[i][j] with t(j,i)

p(2,1)

p(1,1) p(1,2) p(1,3)

p(2,3)p(2,2)

N

N

NB p(1,1) p(2,1)

p(2,2)

p(2,3)p(1,3)

p(1,2)

p(1,1) p(2,1)

p(2,2)

p(2,3)p(1,3)

p(1,2)

p(1,1) p(2,1)

p(2,2)

p(2,3)p(1,3)

p(1,2)

p(1,1) p(2,1)

p(2,2)

p(2,3)p(1,3)

p(1,2)

p(1,1) p(2,1)

p(2,2)

p(2,3)p(1,3)

p(1,2)

p(1,1) p(2,1)

p(2,2)

p(2,3)p(1,3)

p(1,2)

NBP=2, Q=3

Node set p(P,Q) Coefficient Matrix A[N][N]

Fig. 17 Block-cyclic distribution

� Swap operation by using split node set
Swap operation, exchanging a pivot row, is used by split node set, described in Section 3.1.2 as following.

1 #pragma xmp bcast (pivot row) from col(get col key(target)) on col(:)

5



HPC Challenge Award Competition Class 2 at SC14

� Panel broadcast by using gmove directive
The following code and Fig. 18 indicate a panel broadcast operation using gmove directive. The array A L[][] is also distributed
in the block-cyclic manner, but only the first dimension of the array A L[][] is distributed. Thus, target elements of the array
A[j+NB:N-j-NB][j:NB] (stripe block in Fig. 18) are broadcast to the array A L[j+NB:N-j-NB][0:NB] that exists on each node.

1 double A[N][NB];
2 #pragma xmp align A L[i][∗] with t(∗,i)
3 :
4 #pragma xmp gmove
5 A L[j+NB:N−j−NB][0:NB] = A[j+NB:N−j−NB][j:NB];

U

NB

j

j+NB

N-j-NB

A[N][N] A_L[N][NB]

Panel Broadcast

Fig. 18 Panel broadcast

� Usage of BLAS library for distributed array
High performance mathematical libraries, for example BLAS and ScaLAPACK, are often used in computational science. In XMP, a
programmer can use these libraries for a distributed array. XMP has a rule that a pointer of an XMP distributed array indicates a local
pointer. The following code shows that DGEMM function applies distributed arrays A[][], A L[][], and A U[][]. Note that when
using mathematical libraries, a programmer may need some information of a local array, for example leading dimension. Thus,
XMP provides useful functions to get information of a local array from a distributed array. The function xmp array lead dim() re-
turns a leading dimension of a local array. We believe that mixing global-view and local-view gives programmers good productivity
with high performance.

1 xmp desc t A desc = xmp desc of(A); // Get descriptor of distributed array
2 int ld[2];
3 xmp array lead dim(A desc, ld);
4 int ld A = ld[1];
5 cblas dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, local len y, local len x, NB, −1.0,
6 &A L[global y][0], ld A L, &A U[0][global x], ld A U, 1.0, &A[global y][global x], ld A);

3.1.4 Performance
We performed the HPL with eight threads per process on one node. The size of the coefficient matrix A[][] is about 70% of the system

memory. Table 5 shows the performance and the theoretical peak performance of the system. For comparison, Table 5 also shows the
performance of the HPL of last year. The best performance is 970.97 TFlops for 16,384 nodes. The performance of this year is a little
better than that of last year thanks to the split node set described in Section 3.1.2.

Table 5 Performance of HPL in XcalableMP

#Nodes Performance (TFlops)
XcalableMP of this year (/peak) XcalableMP of last year (/peak)

1 0.11 (82.52%) 0.10 (77.86%)
4 0.40 (78.83%) 0.38 (75.32%)

16 1.58 (76.99%) 1.46 (73.13%)
64 6.19 (75.55%) 5.70 (71.26%)

256 23.72 (72.38%) 21.95 (68.58%)
1,024 88.12 (67.23%) 81.37 (63.57%)
4,096 309.64 (59.06%) 286.20 (55.90%)

16,384 970.97 (46.30%) 933.80 (44.50%)

3.1.5 More scaling improvement
We have been implementing a new HPL which uses asynchronous gmove directive to implement “look-ahead” algorithm. The fol-

lowing code shows a part of the code. If the async clause is specified in XMP directive, the statements following the directive may be
executed while the operation continues asynchronously. To guarantee the asynchronous operation is complete, the wait async directive
is used. We believe that this operation will improve the performance. If we finish the implementation by SC14, we hope to have a chance
to present this result at BoF in SC14.

1 #pragma xmp gmove async (1)
2 A L[j+NB:N−j−NB][0:NB] = A[j+NB:N−j−NB][j:NB];
3
4 ...
5 #pragma xmp wait async (1)

6



HPC Challenge Award Competition Class 2 at SC14

3.2 Fast Fourier Transform in XcalableMP

3.2.1 Overview
We implemented an FFT algorithm written in XMP Fortran calling FFTE [17] library routine zfft1d. The SLOC is 204.

3.2.2 Differences from the XMP implementation of last year
Last year, we ported the hpcc-1.4 FFT into XMP. It still contained a few MPI calls and included C programs to describe inter-procedure

interfaces. Thus, the SLOC was too large. In this year, we have rewritten it only in XMP Fortran. Thanks to the powerful and natural
interprocedure-interfaces of XMP, the program became very simple and easy to read. Moreover, in order to tune its performance and to
simplify the program, we changed how to use OpenMP thread parallelism. While calling FFTE library in each OpenMP thread last year,
calling OpenMP version FFTE in each process this year.

The XMP nodes directive uses MPI Comm dup() in Omni XMP compiler. In case of more than ten thousand nodes, the
MPI Comm dup() takes large cost. Thus, we move the XMP nodes directive from a local function to module common in the XMP
FFT. Moreover, we modified the Omni XMP compiler to reduce the number of calling MPI Comm split(). While MPI Comm split()
was always called for every XMP align directive in last year, it is quite rarely called in the latest Omni XMP compiler.

3.2.3 Implementation
The XMP FFT consists of three files: “main.f90,” “xmp-fft.f90,” and “xmp-zfft1d.f90.”
The global FFT algorithm of HPCC is described in “xmp-fft.f90.” In this file, subroutine xmpfft is called from the main and gets

suitable combination of sizes na and nb, where na × nb = n, n is the length of vector. Subroutine xmfft1 is called from xmpfft and
allocates each part of huge global arrays a, b and w for each process using automatic array feature in Fortran90. The size is globally n
and locally n / (number of nodes) for each.

The six-step FFT algorithm called from the global FFT is described in “xmp-zfft1d.f90.” Code fragments in the file is shown in bellow.
As dummy arguments of subroutine xmpzfft1d, the objects of global two-dimensional arrays a, b and w are inherited from the caller
xmpfft1 without any extra overhead. The template, distribute, and align directives describe block distribution attributes of arrays. In
the six-step FFT, global matrix transposition must be performed three times. The Omni XMP compiler provides an effective global trans-
pose library “xmp transpose(),” as shown in Fig. 19, which can be called simply with XMP distributed arrays as actual arguments. Also
outside of the kernel part, XMP program usefully accepts OpenMP pragmas. The last code fragment shows combined parallelization of
XMP and OpenMP for the outermost loop do i.

1 subroutine xmpzfft1d(a, b, c, w, n, nx, ny, c size, is back)
2 ...
3 complex∗16 a(nx,ny), b(ny,nx), w(ny,nx)
4 !$xmp template tx(nx)
5 !$xmp template ty(ny)
6 !$xmp distribute tx(block) onto p
7 !$xmp distribute ty(block) onto p
8 !$xmp align a(∗,i) with ty(i)
9 !$xmp align b(∗,i) with tx(i)

10 !$xmp align w(∗,i) with tx(i)

1 !$xmp loop on tx(i)
2 !$omp parallel do
3 do i=1,nx
4 do j=1,ny
5 b(j,i)=b(j,i)∗w(j,i)
6 end do
7 end do

node 1 node 1

node 2 node 2

node 1

node 1

n
o

d
e

 1

n
o

d
e

 1

a(nx,ny)

b(ny,nx)

lo
ca

l c
op

y

A
ll-

to
-A

ll 
C

o
m

m
u

n
ic

a
ti
o

n

working dir

call xmp_transpose(b, a, 1)    ! a and b are XMP distributed arrays

Fig. 19 Behavior of the xmp transpose()

3.2.4 Performance

We performed the XMP FFT with eight threads per process on one
node. In order to use effectively cache on the K computer, we set pa-
rameters, the number of nodes and length of vector [18]. The length
of vector occupies about 35 % of system memory. For comparison,
we also evaluated the modified hpcc-1.4 FFT which is optimized for
the K computer. Table 6 shows the results where the best perfor-
mance of the XMP FFT is 79.45 TFlops for 36,864 nodes. The per-
formance of the XMP FFT is almost the same as that of the hpcc-1.4
FFT.

Table 6 Performance of FFT in XcalableMP

#Nodes
Performance (TFlops)

XcalableMP of XcalableMP of modified
this year (/peak) last year (/peak) hpcc-1.4 (/peak)

36 0.09 (1.89%) 0.13 (2.79%) 0.14 (2.91%)
144 0.55 (2.97%) 0.64 (3.47%) 0.68 (3.67%)
576 2.13 (2.89%) 2.14 (2.90%) 2.21 (3.00%)

2,304 8.27 (2.80%) 8.16 (2.77%) 8.43 (2.86%)
9,216 27.72 (2.35%) 25.26 (2.14%) 25.55 (2.17%)

36,864 79.45 (1.68%) 50.08 (1.08%) 72.82 (1.56%)

7



HPC Challenge Award Competition Class 2 at SC14

3.3 STREAM in XcalableMP

3.3.1 Overview
We implemented a STREAM algorithm written in XMP C language. The SLOC is 69.

3.3.2 Differences from the XMP implementation of last year
We developed two XMP STREAM benchmarks last year. One was flat-MPI version, which was in the submission report last year.

The other was multi-threaded version, which was in the presentation of BoF at SC13. In this year, we add “#pragma loop xfill” and
“#pragma loop noalias” directives to the multi-threaded version, which are optimization directives of the Fujitsu compiler. While
“#pragma loop xfill” ensures one cache line to store write-only data, “#pragma loop noalias” indicates that there is no possibility that
the different pointer variables do not indicate the same storage area. Of cause, the directives are useful for the hpcc-1.4 STREAM.

3.3.3 Implementation
The following code shows a part of an XMP STREAM code. The program is quite straightforward. Basically, a programmer only

adds XMP directives into the sequential STREAM benchmark. Line 1 defines XMP node set p to parallelize this program. Line 3 to 7 is
a main kernel of STREAM. Line 9 performs a reduction operation among nodes to calculate a total performance.

1 #pragma xmp nodes p(∗)
2 ...
3 #pragma loop xfill
4 #pragma loop noalias
5 #pragma omp parallel for
6 for (j=0; j<size; j+=1)
7 a[j] = b[j] + scalar∗c[j];
8 ...
9 #pragma xmp reduction(+:triadGBs)

3.3.4 Performance
We performed the STREAM with eight threads per process on one node. The vector lengths of the arrays a[], b[], c[] is 536,870,912

which occupies 75 % of the system memory. For comparison, we also evaluated the hpcc-1.4 STREAM benchmark with the“#pragma
loop xfill” and “#pragma loop noalias” directives. Table 7 shows the performances, and also shows the performances of the multi-
threaded version STREAM of last year. The best performance of the XMP STREAM is 3,583 TB/s for 82,944 nodes (full node). The
performance of the XMP STREAM is as the same as that of hpcc-1.4 with the directives.

Table 7 Performance of STREAM in XcalableMP

#Nodes Performance (GB/s)
XcalableMP of this year (/peak) hpcc-1.4 (/peak) XcalableMP of last year (/peak)

1 43 (67.50%) 43 (67.49%) 29 (46.15%)
4 173 (67.52%) 173 (67.49%) 118 (46.11%)

16 691 (67.49%) 691 (67.49%) 470 (46.06%)
64 2,764 (67.49%) 2,764 (67.48%) 1,881 (46.11%)

256 11,057 (67.48%) 11,056 (67.48%) 7,528 (46.10%)
1,024 44,227 (67.49%) 44,227 (67.49%) 30,113 (46.11%)
4,096 176,908 (67.49%) 176,909 (67.49%) 120,450 (46.11%)

16,384 707,638 (67.49%) 707,634 (67.49%) 481,808 (46.10%)
65,536 2,830,648 (67.49%) 2,830,612 (67.49%) 1,927,172 (45.95%)
82,944 3,582,500 (67.49%) 3,582,519 (67.49%) 2,439,053 (45.95%)

8



HPC Challenge Award Competition Class 2 at SC14

3.4 RandomAccess in XcalableMP

3.4.1 Overview
We implemented a RandomAccess algorithm written in XMP C language. The SLOC is 253.

3.4.2 Differences from the XMP implementation of last year
In last year, the post and wait directives were implemented using MPI Send/Recv in the Omni compiler. In order to improve perfor-

mance, we have implemented the post and wait directives using RDMA of the K computer. Besides, we have fixed a minimum bug for
verification.

3.4.3 Implementation
The XMP RandomAccess is iterated over sets of CHUNK updates on each node. In each iteration, the algorithm calculates for each

update the destination node that owns the array element to be updated and communicates the data with each node. This communication
pattern is known as complete exchange or all-to-all personalized communication, which can be performed efficiently by an algorithm
referred to as the recursive exchange algorithm when the number of nodes is a power of two [19]. We implemented an algorithm with a
set of remote writes to a coarray in local-view programming using XMP C language. Note that the number of the remote writes is also
sent as an additional first element of the data. A point-to-point synchronization is specified with the XMP post and wait directives in
order to realize asynchronous behavior of the algorithm.

1 u64Int recv[MAXLOGPROCS][RCHUNK+1]:[∗];
2 u64Int send[2][CHUNKBIG+1]:[∗];
3 ...
4 for (j = 0; j < logNumProcs; j++) {
5 nkeep = nsend = 0;
6 isend = j % 2;
7 ipartner = (1 << j) ˆ MyProc;
8 if (ipartner >MyProc) {
9 sort data(data, data, &send[isend][1], nkept, ...);

10 if (j > 0) {
11 jpartner = (1 << (j−1)) ˆ MyProc;
12 #pragma xmp wait(p(jpartner+1))
13 #pragma xmp sync memory
14 nrecv = recv[j−1][0];
15 sort data(&recv[j−1][1], data, &send[isend][1], nrecv, ...);
16 }
17 }
18 else { ... }
19 send[isend][0] = nsend;
20 recv[j][0:nsend+1]:[ipartner+1] = send[isend][0:nsend+1];
21 #pragma xmp sync memory
22 #pragma xmp post(p(ipartner+1), 0)
23 if (j == (logNumProcs − 1)) update table(data, Table, nkeep, ...);
24 nkept = nkeep;
25 }
26 ...
27 jpartner = (1 << (logNumProcs−1)) ˆ MyProc;
28 #pragma xmp wait(p(jpartner+1))
29 #pragma xmp sync memory
30 nrecv = recv[logNumProcs−1][0];
31 update table(&recv[logNumProcs−1][1], Table, nrecv, ...);

The right code shows a part of the XMP RandomAccess
code. Line 1 and 2 declare arrays recv[][] and send[][]
as coarrays. In line 19, the variable nsend, which is the
number of transfer elements, is set to the first element of
array send[][] to be used by the destination node to update
its local table. In line 20, elements from send[isend][0]
to send[isend][nsend] are put to those from recv[j][0] to
recv[j][nsend] in the ipartner+1 node. In line 21, the sync
memory directive is used to ensure the remote definition
of a coarray is complete. In line 22 and 28, the post and
wait directives are used for point-to-point synchronization.
The post directive sends a signal to the node ipartner+1 to
inform that the remote definition for it is completed. Each
node waits at the wait directive until receiving the signal
from the node jpartner+1.

The Omni compiler has been optimized for the K com-
puter. In order to use high-speed one-sided communica-
tion on the K computer, the coarray syntax is translated
into calling the extended RDMA interface provided by the
K computer.

3.4.4 Performance
We performed the XMP RandomAccess, referred to as flat-MPI. The table size is equal to half of the system memory. Table 8 shows

the performance results of this year and last year. For comparison, we also evaluated the modified hpcc-1.4 RandomAccess, for which
the functions for sorting and updating the table are specifically optimized for the K computer. The best performance of the XMP Rando-
mAccess is 254.20 GUP/s (Giga UPdates per Second) for 16,384 nodes. Table 8 shows that the performance of the RandomAccess of
this year is much better than that of the XMP RandomAccess of last year, and is a little better than that of modified hpcc-1.4.

Table 8 Performance of RandomAccess in XcalableMP

#Nodes Performance (GUP/s)
XcalableMP of this year XcalableMP of last year modified hpcc-1.4

1 0.09 0.08 0.08
8 0.51 0.43 0.44

64 2.92 2.08 2.64
512 16.94 11.41 15.78

4,096 83.61 61.43 80.81
16,384 254.20 162.63 243.40

9



HPC Challenge Award Competition Class 2 at SC14

4. Implementation and Performance of benchmarks using XcalableACC on HA-PACS/TCA
We are sorry that our implementations and tunings of HPL and FFT are not sufficient because of machine trouble of HA-PACS. We

will improve them until BoF at SC14.

4.1 High-performance Linpack in XcalableACC

4.1.1 Overview
We implemented an HPL algorithm written in XACC C language. The SLOC is 343.

4.1.2 Implementation
The following code shows a part of the XACC HPL code. This code is based on the XMP HPL code described in Section 3.1. We use

cuBLAS library [20] to perform the DGEMM calculation instead of BLAS library.
The DGEMM calculation needs three arrays, A[][], A L[], and A U[] in Section 3.1. In the following code, devA, devA L, and devA U

are their device pointers. The arrays A L[] and A U[] can be saved on GPU. In line 1 and 4, OpenACC data directive transfers the two
arrays to GPU. However, the array A[][], a coefficient matrix, is too large to be saved there. Thus, the XACC HPL splits the array A[][],
and transfers it to GPU. Finally, in order to set device pointers in the function cublusDgemm(), OpenACC host data directive is inserted
before it.

1 #pragma acc data copyin(devA L[0:local len y], devA U[0:local len x])
2 for(int n=0;n<local len y;n+=NB){
3 // Packing data to devA[] from A[][]
4 #pragma acc data copy(devA[0:local len x])
5 {
6 #pragma acc host data use device (devA L, devA U, devA)
7 cublasDgemm(’n’,’n’, local len x, NB, NB, −1.0, devA U, local len x, devA L+n∗NB, NB, 1.0, devA, local len x);

4.1.3 Performance
We performed the XACC HPL with four processes on a single node, and each process operates a single GPU. The size of the coefficient

matrix A[][] is about 50% of the system memory. Table 9 shows the performance and the theoretical peak performance of the system.
The best performance is 7,102.36 GFlops for 32 nodes. The performance is insufficient. The reason is that time of transfer data between
CPU and host memory dominates the total computation time.

Table 9 Performance of HPL in XcalableACC

#Nodes #CPUs #GPUs Performance
GFlops (/peak)

1 1 1 91.14 (5.94%)
1 2 4 284.54 (5.00%)
2 4 8 520.52 (4.76%)
4 8 16 1,021.81 (4.77%)
8 16 32 1,870.62 (4.42%)

16 32 64 3,757.59 (4.46%)
32 64 128 7,102.36 (4.22%)

4.1.4 More improvement
It is effective to overlap the DGEMM calculation and data transfer between host memory and GPU memory in XACC HPL. We are

implementing it now.

10



HPC Challenge Award Competition Class 2 at SC14

4.2 Fast Fourier Transform in XcalableACC

4.2.1 Overview
Unfortunately, the result cannot be shown on time because of a severe machine trouble of HA-PACS. We introduce here how it has

been implemented and will be tuned hereafter.

4.2.2 Implementation
Basically, the three XMP files developed for the K computer shown in Section 3.2 can be applied also in HA-PACS. They describe

process parallelism among intra- and inter-node processes. About inside each process, instead of using zfft1d that is a FFTE routine
for multi-thread, we will use both zfft1d and cuzfft1d that is another FFTE routine for GPU. Or, cuzfft1d may be ported into OpenACC
because it may be more suitable in the context of XMP and/or XACC. Since zfft1d and (modified) cuzfft1d have the same interface, the
caller written in XMP can handle them in the same manner.

Our basic approach is as follows. We employ three or more processes for each CPU group, which contains one CPU and two GPUs
connected with the CPU. For the inter-process parallelism, the same program code as the one in the K computer can be used basically.
For the inner-process parallelism, we use both zfft1d for CPUs and (modified) cuzfft1d for GPUs. Because every CPU is connected
with two GPUs, at least one zfft1d and two (modified) cuzfft1d can be expected to be executed asynchronously. In order to simplify
inter-process parallelism, every zfft1d and (modified) cuzfft1d process should bear the same amount of data. Load balance between a
CPU and two GPUs can be adjusted with the number of processes of zfft1d and (modified) cuzfft1d.

4.2.3 Performance
The performance result will be opened at BoF in SC14.

11



HPC Challenge Award Competition Class 2 at SC14

4.3 STREAM in XcalableACC

4.3.1 Overview
We implemented a STREAM algorithm written in XACC C language. The SLOC is 84.

4.3.2 Implementation
The XACC STREAM uses both CPUs and GPUs together. The following code shows a part of the XACC STREAM code. This

code is based on the XMP STREAM code described in Section 3.3. Line 3 sets memory size for GPU per process. Line 4 transfers
local arrays a[], b[], and c[] needed by GPU to the GPU. In lines 8-10, the OpenACC parallel directive parallelizes the loop statement
asynchronously on GPU. In lines 12-14, the OpenMP parallel directive parallelizes the rest statement on CPU. In line 16, the OpenACC
wait directive guarantees the asynchronous operation of lines 8-10 is complete.

1 #pragma xmp nodes p(∗)
2
3 int GPU SIZE = size ∗ ratio;
4 #pragma acc data copy(a[0:GPU SIZE], b[0:GPU SIZE], c[0:GPU SIZE])
5 {
6 for(k=0; k<NTIMES; k++) {
7 ..
8 #pragma acc parallel loop async
9 for (j=0; j<GPU SIZE; j++)

10 a[j] = b[j] + scalar∗c[j];
11
12 #pragma omp parallel for
13 for (j=GPU SIZE; j<size; j++)
14 a[j] = b[j] + scalar∗c[j];
15
16 #pragma acc wait
17 ..
18 } // for
19 } // acc data
20 ..
21 #pragma xmp reduction(+:triadGBs)

4.3.3 Performance
We performed the XACC STREAM with four processes on one node, and each process has five threads. The vector lengths of the

arrays a[], b[], and c[] are 357,913,942 which occupies 25% of the system memory. This vector length is a minimum value according
to the HPCC specification [21] because we want to store data on GPU memory as much as possible. Each GPU memory can allocate
5.5GB by using OpenACC directive. While a single GPU memory stores 5.5GB data, a single process stores 2.5GB data on host memory.
Therefore, we set the local variable ratio in line 3 of above code to 0.68. Note that this benchmark using the variable ratio is limited by
CPU memory band width. The reason is that the CPU job, size of which is 2.5GB, will not finish until the GPU job, size of which is
5.5GB, will be completed. While the theoretical performance of the computation node is 1119.4 GB/s (= 250 GB/s × 4 + 59.7 GB/s × 2
CPUs), the real theoretical performance on this condition is 382.08 GB/s (= 59.7 GB/s × 2 CPUs ÷ (2.5 GB ÷ 8.0 GB)).

Table 10 shows the performances where the “peak” value is 1119.4 GB/s. For comparison, we also evaluated the XMP STREAM
benchmark which uses only CPU. The best performance of the XACC STREAM is 7,238.10 GB/s for 32 nodes. The performance of the
XACC STREAM is much better than that of the XMP STREAM. If the “peak” value in Table 10 is 382.08 GB/s, the XACC performance
is about 60 % of the peak performance (e.g. 226.96 ÷ 382.08 = 0.59). Moreover, the XMP performance is also about 60 % of it if the
“peak” value in Table 10 is 59.7 GB/s (e.g. 72.74 ÷ (59.7 × 2) = 0.61). Thus, we consider that the performances of XACC STREAM is
reasonable.

Table 10 Performance of STREAM in XcalableACC

#Nodes #CPUs #GPUs Performance (GB/s)
XcalableACC (/peak) XcalableMP (/peak)

1 1 1 112.98 (20.19%) 36.16 (6.46%)
1 2 4 226.96 (20.28%) 72.74 (6.50%)
2 4 8 453.71 (20.27%) 145.18 (6.48%)
4 8 16 906.61 (20.25%) 289.99 (6.48%)
8 16 32 1,812.30 (20.24%) 580.23 (6.48%)

16 32 64 3,623.14 (20.23%) 1,159.52 (6.47%)
32 64 128 7,238.10 (20.21%) 2,318.59 (6.47%)

12



HPC Challenge Award Competition Class 2 at SC14

4.4 Himeno Benchmark in XcalableACC

4.4.1 Overview
We implemented a HIMENO algorithm written in XACC C language. The SLOC is 213.

4.4.2 Implementation
In order to evaluate the productivity and the performance of the XACC programming model, we use the HIMENO Benchmark [8] that

evaluates the performance of incompressible fluid analysis code in Flops. The reason the HIMENO Benchmark was selected is because
it provides a good example of a stencil application benchmark and can be used to demonstrate parallelization by XACC shadow and
reflect directives.

1 #pragma xmp template t(0:MKMAX, 0:MJMAX, 0:MIMAX)
2 #pragma xmp nodes n(NDY, NDX)
3 #pragma xmp distribute t(∗, block, block) onto n
4 static float p[MIMAX][MJMAX][MKMAX];
5 #pragma xmp align [k][j][i] with t(i, j, k) :: p, ..
6 #pragma xmp shadow p[1:1][1:1][0]
7 ...
8 #pragma acc data copy(p, ... )
9 {

10 #pragma xmp reflect init (p) acc
11 for(n=0 ; n<nn ; ++n){
12 ...
13 #pragma xmp loop (k,j,i) on t(k,j,i)
14 #pragma acc parallel loop collapse(2) reduction(+:gosa) ...
15 for(i=1 ; i<imax−1 ; ++i)
16 for(j=1 ; j<jmax−1 ; ++j){
17 #pragma acc loop vector reduction(+:gosa) private(s0, ss)
18 for(k=1 ; k<kmax−1 ; ++k){
19 s0 = p[i+1][j][k] ∗ ...
20 ss = ...
21 gosa += ss∗ss;
22 }
23 }
24
25 #pragma xmp loop (k,j,i) on t(k,j,i)
26 #pragma acc parallel loop collapse(2) ...
27 for(i=1 ; i<imax−1 ; ++i)
28 for(j=1 ; j<jmax−1 ; ++j){
29 #pragma acc loop vector
30 for(k=1 ; k<kmax−1 ; ++k)
31 p[i][j][k] = wrk2[i][j][k];
32 }
33 ...
34 #pragma xmp reflect do (p) acc
35 ...
36 } /∗ end n loop ∗/
37 } /∗ end of acc data ∗/

The right code shows a part of the XACC Himeno Bench-
mark code. In lines 1 to 5, the distributed arrays are defined.
In line 6, the shadow directive defines a halo region of the
first and second dimension in the distributed array p[][][]. The
reflect init of line 10 and the reflect do of line 34 directives
perform initialization and synchronization the halo region of
the array p[][][] on accelerator memory. The two loop state-
ments in lines 13-23 and 25-32 are distributed on each node,
and thread-parallelization is performed on the accelerator.

While the SLOC of the XACC Himeno Benchmark is 213,
that of the MPI Himeno Benchmark [8] is 325. For comparison
purposes, we have also implemented OpenACC and MPI Hi-
meno Benchmark (OpenACC+MPI Himeno Benchmark) based
on the MPI Himeno Benchmark. The MPI Himeno Benchmark
synchronizes the halo region using MPI Isend()/Irecv(). In
the OpenACC+MPI Himeno Benchmark, we used GPUDirect
RDMA to transfer the halo region on accelerator memory by
adding the OpenACC host data directives with the use device
clause before MPI Isend()/Irecv(). In addition, we used the
OpenACC data and loop directives to parallelize loop state-
ment as same as the XACC Himeno Benchmark. The SLOC
of the OpenACC+MPI Himeno Benchmark is 365. The Ope-
nACC+MPI Himeno Benchmark requires numerous lines to
calculate the start and end indexes for loop statement on each
process, and to transfer the halo region. By contrast, the XACC
Himeno Benchmark does not need to calculate these indexes,
and to only add XACC directives to transfer the halo region.
From these implementations, we consider that XACC has a better productivity than the combination of OpenACC and MPI.

4.4.3 Performance
We set the number of elements of the array p[256 × n][256][512], n is a number of processes in line 4 of the above code. We performed

the XACC Himeno Benchmark with four processes on a single node. For comparison, we also evaluated the OpenACC+MPI Himeno
Benchmark and the MPI Himeno Benchmark. We performed the MPI Himeno Benchmark, referred to as flat-MPI, which used only
CPUs. Table 11 shows the performances where the best performance of the XACC Himeno Benchmark is 6,871 GFlops for 32 nodes.
The result in Table 11 indicates that the performance of XACC is almost the same as that of the OpenACC +MPI Himeno Benchmark,
and is about eight times better than that of the MPI Himeno Benchmark. The eight times is the same number as the difference between
the bandwidth of GPU memory (1000 GB/s) and that of host memory (119.4 GB/s). Thus, we consider that the performances of XACC
HIMENO benchmark is reasonable.

Table 11 The performance of the Himeno Benchmark in XcalableACC

#Nodes #CPUs #GPUs Performance (GFlops)
XcalableACC (/peak) OpenACC+MPI (/peak) MPI (/peak)

1 1 1 56.27 (1.35%) 56.81 (1.38%) 13.81 (0.17%)
1 2 4 218.73 (1.35%) 222.72 (1.37%) 27.04 (0.17%)
2 4 8 437.15 (1.35%) 444.20 (1.37%) 53.29 (0.16%)
4 8 16 868.74 (1.34%) 886.95 (1.36%) 105.72 (0.16%)
8 16 32 1,734.18 (1.33%) 1,768.40 (1.36%) 208.80 (0.16%)

16 32 64 3,466.15 (1.33%) 3,515.03 (1.35%) 414.18 (0.16%)
32 64 128 6,870.98 (1.32%) 6,897.32 (1.33%) 820.22 (0.16%)

13



HPC Challenge Award Competition Class 2 at SC14

5. Conclusion
This report has investigated the productivity and the performance of the XMP and the XACC programming models through the HPCC

Benchmarks and the Himeno Benchmark. The XMP programming model has a rich set of features based on global-view and local-view
memory models that allows programmers to develop parallel applications with a little cost. Moreover, the XACC programming model
is a directive-based language extension for an accelerator cluster, with which a programmer can develop applications via XMP and
OpenACC directives easily.

Acknowledgment
• The present study was supported by the JST/CREST program entitled “Research and Development on Unified Environment of

Accelerated Computing and Interconnection for Post-Petascale Era” in the research area of “Development of System Software
Technologies for Post-Peta Scale High Performance Computing.”

• Usage of HA-PACS/TCA system was supported by the “Interdisciplinary Computational Science Program” in the Center for Com-
putational Sciences, University of Tsukuba.

• The modification of the two functions for sorting and updating local table in RandomAccess were done in cooperation with Fujitsu
Limited.

References
[1] Hitoshi Murai and Mitsuhisa Sato. “An Efficient Implementation of Stencil Communication for the XcalableMP PGAS Parallel Programming Language,”

7th International Conference on PGAS Programming Models, Edinburgh, Scotland, UK, October, 2013.
[2] Masahiro Nakao, Hitoshi Murai, Takenori Shimosaka, and Mitsuhisa Sato. “Productivity and Performance of the HPC Challenge Benchmarks with the

XcalableMP PGAS language,” 7th International Conference on PGAS Programming Models, Edinburgh, Scotland, UK, October, 2013.
[3] Masahiro Nakao, Jinpil Lee, Taisuke Boku, and Mitsuhisa Sato. “Productivity and Performance of Global-View Programming with XcalableMP PGAS

Language,” CCGrid 2012 - The 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, Ottawa, Canada, May, 2012.
[4] Jinpil Lee. “A Study on Productive and Reliable Programming Environment for Distributed Memory System,” March, 2012.
[5] http://www.aics.riken.jp/en/k-computer/about/

[6] Hitoshi Murai, Masahiro Nakao, Takehiro Shimosaka, Akihiro Tabuchi, Taisuke Boku, and Mitsuhisa Sato. “XcalableACC - a Directive-based Language
Extension for Accelerated Parallel Computing,” SC14 poster, New Orleans, LA, USA, Nov. 2014. (to be published)

[7] Masahiro Nakao, Hitoshi Murai, Takenori Shimosaka, Akihiro Tabuchi, Toshihiro Hanawa, Yuetsu Kodama, Taisuke Boku, Mitsuhisa Sato. “Xcal-
ableACC: Extension of XcalableMP PGAS Language using OpenACC for Accelerator Clusters,” 1st Workshop on accelerator programming using di-
rectives (WACCPD), New Orleans, LA, USA, Nov. 2014. (to be published)

[8] The Riken Himeno CFD Benchmark. http://accc.riken.jp/2444.htm
[9] “HA-PACS Project”, http://www.ccs.tsukuba.ac.jp/CCS/eng/research-activities/projects/ha-pacs
[10] http://www.pccluster.org/en/

[11] C.H. Koelbel, D.B. Loverman, R. Shreiber, GL. Steele Jr., and M.E. Zosel. “The High Performance Fortran Handbook,” MIT Press, 1994.
[12] Ken Kennedy, Charles Koelbel, and Hans Zima. “The rise and fall of High Performance Fortran: an historical object lesson,” Proceedings of the third

ACM SIGPLAN conference on History of programming languages, Pages 7-1-7-22, 2007
[13] R. Numwich and J. Reid. “Co-Array Fortran for parallel programming,” Technical Report RAL-TR-1998-060, Rutherford Appleton Laboratory, 1998.
[14] http://www.openacc-standard.org

[15] Omni XcalableMP Compiler. http://www.hpcs.cs.tsukuba.ac.jp/omni-compiler/xcalablemp/
[16] http://www.aics.riken.jp/jp/outreach/photogallery.html

[17] http://www.ffte.jp

[18] Masahiro Nakao, Hitoshi Murai, Takenori Shimosaka, Mitsuhisa Sato. “HPC Challenge Award Competition Class 2,” http://xcalablemp.org/
download/publication/2013/HPCC13 XMP.pdf

[19] R. Ponnusamy, A. Choudhary and G. Fox. “Communication Overhead on CM5: An Experimental Performance Evaluation,” Proc. Frontiers ’92, pp.108–
115, 1992.

[20] cuBLAS, https://developer.nvidia.com/cublas
[21] HPC Challenge Website. http://icl.cs.utk.edu/hpcc/software/index.html

14


