
Productivity and Performance of
the HPC Challenge Benchmarks with

the XcalableMP PGAS Language

Masahiro Nakao, Hitoshi Murai,
Takenori Shimosaka, Mitsuhisa Sato

7th International Conference on PGAS Programming Models@Edinburgh

Center for Computational Sciences, University of Tsukuba, Japan
RIKEN Advanced Institute for Computational Science, Japan

Overview of XcalableMP（XMP）

Directive-based language extension of C99 and Fortran2008

The same directives are used in XMP/C and XMP/Fortran

Coarray syntax is available in XMP/C and XMP/Fortran

2

int array[16];
#pragma xmp nodes p(4)
#pragma xmp template t(0:15)
#pragma xmp distribute t(block) onto p
#pragma xmp align array[i] with t(i)

main(){
 ...
#pragma xmp loop on t(i)
 for(i = 0; i < 16; i++){
 array[i] = func(i);
 }
}

XMP/C
integer array(16);
!$xmp nodes p(4)
!$xmp template t(1:16)
!$xmp distribute t(block) onto p
!$xmp align array(i) with t(i)

program main
 ...
!$xmp loop on t(i)
 do i=1,16
 array(i) = func(i)
 done
end program

XMP/Fortran

Overview of XcalableMP（XMP）

3

int b[10]:[*];

if(me == 1){
 b[0:5]:[2] = b[0:5]; // Put
}

XMP/C

Directive-based language extension of C99 and Fortran2008

The same directives are used in XMP/C and XMP/Fortran

Coarray syntax is available in XMP/C and XMP/Fortran

XMP/Fortran
integer b(10)[*]

if(me == 1) then
 b(1:5)[2] = b(1:5) // Put
end if

XMP/Fortran is upward
compatible with the Fortran2008

Objective

Examine effectiveness of designs of the XMP PGAS language
for improved productivity and performance of HPC systems

Evaluate the productivity and the performance of XMP through
implementations of the HPC Challenge (HPCC) Benchmarks

Use 32,768 compute nodes at a maximum on the K computers (which
consists of 88,128 compute nodes)

4

ranked 1st in the Top500 on
June, 2011

Agenda

1. Introduce XMP features

- Global-view memory model with XMP directives
- Local-view memory model with coarray syntax
- Designs of XMP for HPC applications

2. Explain implementations of the HPCC Benchmarks and
evaluate their productivity and performance

3. Discuss experimental results

4. Summarize our presentation

5

XMP Global-view model (1/3)

6

The directives specify a
data distribution among
nodes

Node 4
Node 3
Node 2

array[16]
0 1 2 3 4 5 6 7 8 9 10 111213 14

Node 1

15

int	 array[16];
#pragma	 xmp	 nodes	 p(4)
#pragma	 xmp	 template	 t(0:15)
#pragma	 xmp	 distribute	 t(block)	 on	 p
#pragma	 xmp	 align	 array[i]	 with	 t(i)

Distributed Array

XMP Global-view model (2/3)

7

Loop directive is to
parallelize loop statement

1 2 3 4 5 6 7 8 9 10 111213 14 15

#pragma	 xmp	 loop	 on	 t(i)
for(i=2;i<=10;i++){...}

Execute “for” loop in
parallel with affinity to
array distribution

Each node computes Red elements in parallel
Node 4
Node 3
Node 2

array[16]

Node 1

0

int	 array[16];
#pragma	 xmp	 nodes	 p(4)
#pragma	 xmp	 template	 t(0:15)
#pragma	 xmp	 distribute	 t(block)	 on	 p
#pragma	 xmp	 align	 array[i]	 with	 t(i)

XMP Global-view model (3/3)

Data communication directives : broadcast, reduction, gmove

gmove directive

Transfer data while keeping the global image
by using "array section notation"

8

Node 4
Node 3

Node 2

a[10]
0 1 2 3 4 5 6 7

Node 1

b[10]
0 1 2 3 4 5 6 7

#pragma	 xmp	 gmove
a[2:4]	 =	 b[3:4];

[start_index : length]

XMP Local-view model

Support coarray syntax in XMP/C and XMP/Fortran

XMP/Fortran is upward compatible with the Fortran 2008

XMP/C also uses array section notation in coarray syntax

9

int b[10]:[*]; // Declare
 :
if(me == 1)
 a[0:3] = b[4:3]:[2]; // Get

node 1 node 2

a[10]

b[10]

a[10]

b[10]
4 6

The node1 gets b[4:3] in the node 2

It is easy to express one-sided communication for local data (Put/Get).
Can mix XMP global-view directives with coarray-syntax.

XMP/C

Designs of XMP for HPC applications

PGAS programming language must have both high productivity

and high performance

The productivity of HPC applications consists of programming cost,
educational cost, porting cost, and tuning cost

Designs of XMP for HPC applications (1/3)

Easy writing of various parallel applications <programming cost↓>

[Global-view] Enable parallelization of an original sequential code using
minimal modification with simple directives

[Local-view] Easy to express one-sided comm. with coarray-syntax

Easy learning <educational cost↓>

Extension of C and Fortran

10

Designs of XMP for HPC applications

Design of XMP for HPC applications (2/3)

Numerical libraries (BLAS etc.) & MPI library can be invoked from XMP
program <porting↓, tuning cost↓, performance↑>

11

int	 array[16];
#pragma	 xmp	 nodes	 p(4)
#pragma	 xmp	 template	 t(0:15)
#pragma	 xmp	 distribute	 t(block)	 onto	 p
#pragma	 xmp	 align	 array[i]	 with	 t(i)

main(){
	 	 	 ...
	 	 	 cblas_dgemm(..,	 &array[k],	 ...);
}

XMP inquiry functions obtain local memory information from a global array.
For example, xmp_array_lead_dim() obtains a local leading dimension of
a global array.

a pointer of a global array
indicates a local pointer on the
node to which it is distributed

This is a code example where
a global array is used in
BLAS library.

Designs of XMP for HPC applications

Design of XMP for HPC applications (3/3)

"OpenMP-safe", except for comm. directives <performance↑>

Programmer can use OpenMP directives in XMP

12

int array[16];
#pragma xmp nodes p(4)
#pragma xmp template t(0:15)
#pragma xmp distribute t(block) onto p
#pragma xmp align array[i] with t(i)

main(){
 ...
#pragma xmp loop on t(i)
#pragma omp parallel for
 for(i = 0; i < 16; i++){
 array[i] = func(i);
 }
}

XMP/C
integer array(16);
!$xmp nodes p(4)
!$xmp template t(1:16)
!$xmp distribute t(block) onto p
!$xmp align array(i) with t(i)

program main
 ...
!$xmp loop on t(i)
!$omp parallel do
 do i=1,16
 array(i) = func(i)
 done
end program

XMP/Fortran

Agenda

1. Introduce XMP features

- Global-view memory model with XMP directives
- Local-view memory model with coarray syntax
- Designs of XMP for HPC applications

2. Explain implementations of the HPCC Benchmarks and
evaluate their productivity and performance

3. Discuss experimental results

4. Summarize our presentation

13

HPC Challenge(HPCC) Benchmarks

The HPCC Benchmarks are a set of benchmarks to evaluate
multiple attributes on an HPC system

The HPCC Benchmarks are also used at HPCC Award Competition
at Supercomputer Conference

In Class 1, only the performance of an HPC system is evaluated

In Class 2, the productivity and performance of a programming language
are evaluated

RandomAccess

High Performance Linpack (HPL)

Fast Fourier Transform (FFT)

STREAM

14

 based on hpcc-1.4 written in
C + Fortran + MPI which is
released by the HPCC
community (http://
icl.cs.utk.edu/hpcc/software/)

 weak scaling

Evaluation

Omni XMP Compiler version 0.7-alpha

Reference Implementation

Open Source

Optimized for the K computer

"./configure --target=Kcomputer-linux-gnu"

To use high-speed one-sided communication on the K computer,
the coarray syntax is translated into calling the extended RDMA

This Compiler will be released in Nov. 2013

15

http://www.hpcs.cs.tsukuba.ac.jp/omni-compiler/xcalablemp/

Environment

16

The K computer HA-PACS

CPU SPARC64 VIIIfx 2.0GHz
8Cores, 128GFlops

Xeon E5-2670 2.6GHz x2
8Cores x2, 332.8GFlops

Memory DDR3 SDRAM 16GB
64GB/s/Socket

DDR3 SDRAM 128GB
51.4GB/s/Socket

Network Torus fusion six-dimensional
mesh/torus network, 5GB/s

Infiniband QDRx2rails
Fat-tree network, 4GB/s

To measure the performance, we used 32,768 nodes at a maximum
of the K computer and 64 nodes at a maximum of HA-PACS

HA-PACS has GPUs
as an accelerator.
But we used only CPU.

RandomAccess

The RandomAccess benchmark measures the performance of
random integer updates of memory via interconnect

Each process randomly updates table of other processes

It is suitable to use coarray syntax

To reduce communication times, our algorithm is iterated over sets of
CHUNK updates on each node

Our algorithm is almost the same as the hpcc-1.4 RandomAccess

17

RandomAccess

18

Declare coarray

PUT

Ensure to finish
PUT operation

u64Int recv[MAXLOGPROCS][RCHUNK+1]:[*];

for(...){
 ...
 send[isend][0] = nsend; // set "number of transfer elements"
 recv[j][0:nsend+1]:[send_target] = send[isend][0:nsend+1];
#pragma xmp sync_memory
#pragma xmp post(p(send_target), 0)
 ...
#pragma xmp wait(p(recv_target))
#pragma xmp sync_memory
 nrecv = recv[j-1][0];
 sort_data(&recv[j-1][1], nrecv, ..);
 ...
}

 Source lines of code (SLOC) is 258, written in XMP/C

Performance of RandomAccess

19

GUPS (Giga UPdates per Second)

flat-MPI (8 Process/Node)

Good Performance !!

The modified hpcc-1.4 RandomAccess, for which the
functions updating the table are specifically optimized
for the K computer

163GUPS in 16,384 nodes
 (131,072 CPU Cores)

High Performance Linpack (HPL)

HPL measures the floating point rate of execution to solve a
dense system of linear equations using LU factorization

In our implementation, the coefficient matrix is distributed in block-
cyclic manner like hpcc-1.4 HPL

This distribution is useful to perform good load balance

BLAS Library is used

double	
 A[N][N];
#pragma	
 xmp	
 nodes	
 p(4,2)
#pragma	
 xmp	
 template	
 t(0:N-­‐1,	
 0:N-­‐1)
#pragma	
 xmp	
 distribute	
 t(cyclic(NB),	
 \
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 cyclic(NB))	
 onto	
 p
#pragma	
 xmp	
 align	
 A[i][j]	
 with	
 t(j,i)

A[N][N]

NB

NB node 1
node 2

node 8

・
・

High Performance Linpack (HPL)

21

double	
 A_L[N][NB];
#pragma	
 xmp	
 align	
 L[i][*]	
 with	
 t(*,i)
	
 	
 	
 	
 :
#pragma	
 xmp	
 gmove
L[k:len][0:NB]	
 =	
 A[k:len][j:NB];

k

len

Panel Broadcast by using gmove directive

SLOC is 288, written in XMP/C

Performance of HPL

22

8 Threads/Process on 1 node

543 TFlops in 8,192 nodes
(65,536 CPU Cores),
53% of the theoretical peak

100 GFlops in 1 node, 8 CPU Cores,
78% of the theoretical peak

In spite of weak scaling, the parallel
efficiency is not very good.

Fast Fourier Transform (FFT)

FFT measures the floating point rate of execution for double-
precision complex one-dimensional Discrete Fourier Transform

We parallelized only a subroutine “PZFFT1D0”, which is the main
kernel of the hpcc-1.4 FFT

23

Fast Fourier Transform (FFT)

Matrix transposition is implemented by using gmove directive

24

!$XMP	
 distribute	
 tx(block)	
 onto	
 p
!$XMP	
 distribute	
 ty(block)	
 onto	
 p
!$XMP	
 align	
 A(*,i)	
 with	
 ty(i)
!$XMP	
 align	
 A_WORK(i,*)	
 with	
 tx(i)
!$XMP	
 align	
 B(*,i)	
 with	
 tx(i)
	
 	
 	
 :
!$XMP	
 gmove
A_WORK(:,:)	
 =	
 A(:,:)	
 !	
 all-­‐to-­‐all

!$XMP	
 loop	
 on	
 tx(I)
!$OMP	
 parallel	
 do
DO	
 60	
 I=1,NX
	
 	
 DO	
 70	
 J=1,NY
	
 	
 	
 	
 B(J,I)=A_WORK(I,J)
	
 	
 60	
 CONTINUE
70	
 CONTINUE

!$XMP	
 gmove

1. Node 2 transfers data to node 1
 with packing it
2. Node 1 copies A_WORK() to
 B() by using XMP and OpenMP
 directives

The SLOC of PZFFT1D0 is 65, written in XMP/Fortran + OpenMP

Performance of FFT

25

8 Thread/process on 1 node

24TFlops in 32,768 nodes
(262,144 CPU Cores)

50% of performance of the
hpcc-1.4 FFT

Agenda

1. Introduce XMP features

- Global-view memory model with XMP directives
- Local-view memory model with coarray syntax
- Designs of XMP for HPC applications

2. Explain implementations of the HPCC Benchmarks and
evaluate their productivity and performance

3. Discuss experimental results

4. Summarize our presentation

26

Comparison with hpcc-1.4 (MPI)

Productivity

RandomAccess : SLOC : 938 -> 258

 coarray is a more convenient to express communications

HPL : SLOC : 8,800 -> 288

PZFFT1D0 of FFT : SLOC : 101 -> 65

XMP global view enables programmers to develop parallel
applications easily

Performance

RandomAccess : Good !

HPL and FFT : The performances of XMP implementations are worse
than those of hpcc-1.4

27

hpcc-1.4 XMP

Discussion (2/3)

Overhead of gmove directive

28

[FFT] In gmove directive, data
pack/unpack operation is not executed
with thread-parallelization

!$XMP	
 gmove
A_WORK(:,:)	
 =	
 A(:,:)

#pragma	
 xmp	
 gmove
A_L[k:len][0:NB]	
 =	
 A[k:len][j:NB];

[HPL] Gmove directive is a blocking
operation. Communication and
computation are not overlapped.

Discussion (3/3)

To improve performance

non-blocking gmove operation

data pack/unpack with threaded-
parallelization in gmove

29

Improving the performance of the gmove is important. But, ...

While level of abstraction of the gmove is very high, the performance
of the gmove remains unclarity

Gmove improves the productivity, but may become worse the
performance

If the performance of the gmove has a problem, we recommend that
programmer will be able to rewrite the communication with coarray-
syntax or MPI library

#pragma	
 xmp	
 gmove	
 async(async-id)
A_L[k:len][0:NB]	
 =	
 A[k:len][j:NB];

(overlapped	
 computation)
#pragma	
 xmp	
 wait_async	
 async(async-id)

Summary

Examine the effectiveness of designs of XMP for improved the
productivity and the performance of a HPC system

Global-view model and Local-view model

Can use Numerical Library with XMP inquiry functions

Evaluate the productivity and the performance through
implementations of HPCC Benchmarks on the K computer

Good productivity and performance in 32,768 nodes at a maximum

But the gmove directive has scope to continue to improve

Future work

Support non-blocking operation and thread-parallelization

Retry to evaluate their performances for next HPCC Award at SC13

30

