
XcalableMP
Directive-based language eXtension for Scalable Parallel Programming

For more information, please visit Center for Computational Sciences, University of Tsukuba (#3618)

Overview

XcalableMP(XMP) is a directive-based PGAS lan-
guage for distributed memory system

What’s XcalableMP ?

Designed by XMP Specification Working Group
Members from academia (U. Tsukuba, U. Tokyo, Kyoto U., and
Kyusyu U.), research labs(RIKEN, NIFS, JAXA, and
JAMSTEC/ES), and industries(Fujitsu, NEC, Hitachi) in Japan

Omni XMP compiler was developed in "Seamless and
Highly-productive Parallel Programming Environment
for High performance computing" project funded by
MEXT in Japan

Implementation Status

Omni XMP compiler ver. 0.6 is developed by Univer-
sity of Tsukuba and AICS, japan

XMP specification ver. 1.1 is available

Programming Model

Language Features
Coarray Fortran like feature

SPMD as a basic
execution model

All actions are taken by direc-
tives for being “easy-to-under-
stand” in performance tuning
(different from HPF)

Node1 Node2 Node3

Directives(Sync, Comm.)

Language extension of C99 and
Fortran 95

Communication,
synchronization,
and work-mapping occur when
directives are encountered

Global-view model Local-view model

Node 1

Node 2

Node 3

Node 4

0 1 2 3 4 5 6 7 8 9 10 11

int a[12];
#pragma xmp nodes p(4)
#pragma xmp template t(0:11)
#pragma xmp distribute t(block) onto p
#pragma xmp align a[i] with t(i)

Extends C for an array section

The array_name[start:length]:[node_number]
means elements from the array_name[start]
to the array_name[start+length-1] located on
a node whose number is node_number.

Node 1

Node 2

a[] b[]

Performance

On the K computer

Download from http://www.xcalablemp.org
XMP/C and XMP/Fortran Compiers are included
Interface of Scalasca & tlog profiling tools
Supperted platforms are Linux cluster, the K computer,

Mapping inquiry procedures are expanded
The specification on coarrays is improved

Cray XE, XT, and so on

On HA-PACS

P
er

fo
rm

an
ce

(T
Fl

op
s)

Random Access

HPL HIMENO Benchmark

SPARC64 VIIIfx 2.0GHz (Single Socket),
8Cores/Socket (128GFlops/Node)

DDR3 SDRAM 16GB,
64GB/s/Socket
Torus fusion six-dimensional
mesh/torus network, 5GB/s

Xeon E5-2670 2.6GHz (Dual Socket),
8Cores/Socket (332.8GFlops/Node)

DDR3 SDRAM 128GB,
51.4GB/s/Socket
Infiniband QDRx2rails
Fat-tree network, 4GB/s

Typical linux cluster

FFT

Number of CPU Cores

P
er

fo
rm

an
ce

(G
U

P
/s

)

8 64 512 4096 32768

100

10

1

0.1

0.01

MPI

XMP

104 GUP/s
(65536 Cores)

Number of CPU Cores

P
er

fo
rm

an
ce

(G
Fl

op
s)

8 32 128 512 2048 8192

1000

100

10

1

0.1

10

1

0.1

XMP
Theoretical peak

8 16 32 64 128 256 512 1024

Number of CPU Cores Number of CPU Cores

P
er

fo
rm

an
ce

(G
Fl

op
s)

1000

100

10
8 16 32 64 128 256 512 1024

MPI

XMP

1572 GFlops
(1024 Cores)

b[] is a normal
array or coarray

a[12] is distributed onto 4 nodes

#pragma xmp loop on t(i) reduction(+s)
for(i = 1; i < 10; i++) {
 a[i] = func(i);
 s += a[i];
}

Data mapping

Work mapping

Distributed
Array

Global index

double a[5]:[*]; // Declaration
 :
b[0:2] = a[3:2]:[2]; // Get Operation

MPI

XMP

2930 GFlops
(32768 Cores)

32768

array_name[start:length[:step]]:[node_number]

17 TFlops
(79% of peak)

