
Directive-Based Language eXtension for
Scalable Parallel Programming

Directive-Based Language eXtension for
Scalable Parallel Programming

OverviewOverview

XcalableMPXcalableMP

int array[MAX];

main(int argc, char **argv){
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 dx = MAX/size;
 llimit = rank * dx;
 if(rank != (size -1)) ulimit = llimit + dx;
 else ulimit = MAX;

 temp_res = 0;
 for(i=llimit; i < ulimit; i++){
 array[i] = func(i);
 temp_res += array[i];}

 MPI_Allreduce(&temp_res, &res, 1, MPI_INT, MPI_SUM, ...);
 MPI_Finalize();
}

Current Solution for parallel programming

We need better solutions !!

int array[MAX];
#pragma xmp nodes p(*)
#pragma xmp template t(0:MAX)
#pragma xmp distribute t(block) onto p
#pragma xmp align array[i] with t(i)

main(){
#pragma xmp loop on t(i) reduction (+:res)
 for(i = 0; i < MAX; i++){
 array[i] = func(i);
 res += array[i];}
}

XcalableMP enables users to
e a s i l y d e v e l o p p a r a l l e l
p r o g r a m s a n d t o t u n e
performance with minimal
and simple notation !!

Only way to program is MPI,
but MPI programming seems
difficult,... we have to rewrite
almost entire program and it
is time-consuming and hard to
debug... mmm

Language FeaturesLanguage Features

Language extension of C99 and Fortran 95

XcalableMP is a directive-based PGAS lan-
guage for distributed memory system

Designed by XcalableMP Specification Work-
ing Group

Members from academia(U. Tsukuba, U. Tokyo, Kyoto U.,
Kyusyu U.), research labs(RIKEN, NIFS, JAXA,
JAMSTEC/ES), industries(Fujitsu, NEC, Hitachi) in Japan

Also includes Co-Array Fortran like feature
as “local-view” programming model

Supports typical parallelization based on the
data parallel paradigm and work mapping
under “global-view” programming model

SPMD as a basic execution model

To reduce code-writing and educational
costs

Performance-awareness

int a[16];
#pragma xmp nodes p(4)
#pragma xmp template t(0:16)
#pragma xmp distribute t(block) onto p
#pragma xmp align a[i] with t(i)

#pragma xmp loop on t(i)
for(i = 2; i < 14; i++) {
 a[i] = func(i);
}

Node 0

Node 1

Node 2

Node 3

Distributed Array

Node 0

Node 1

Node 2

Node 3

Each node computes red elements in parallel

Data Mapping

Work Mapping

Node0 Node1 Node2

Directives
Comm, sync, and work-mapping

Communication, syn-
chronization and
work-mapping occur
when directives are
encountered

A thread starts execu-
tion in each node inde-
pendently (as in MPI)

All actions are taken by directives for being
“easy-to-understand” in performance tuning
(different from High Performance Fortran)

�$

�.

�:

�$�.

�.�:

�$�:

�$�.�:

�,

�4�$�������9�.�1�����Q�E�G��

