KCalableMP Directive-Based Language extension for Scalable Parallel Programming Supercomputer T2K Open Supercomputer Alliance University of Tsukuba University of Tokyo Kyoto University

Overview

• XcalableMP is a directive-based PGAS language for distributed memory system

Designed by XcalableMP Specification Working Group

Members from academia(U. Tsukuba, U. Tokyo, Kyoto U., Kyusyu U.), research labs(RIKEN, NIFS, JAXA, JAMSTEC/ES), industries(Fujitsu, NEC, Hitachi) in Japan

Language Features

To reduce code-writing and educational costs

Language extension of C99 and Fortran 95

Supports typical parallelization based on the data parallel paradigm and work mapping under "global-view" programming model

MPI_Comm_rank(MPI_COMM_WORLD, & MPI_Comm_size(MPI_COMM_WORLD, & dx = MAX/size; llimit = rank * dx; if(rank l= (size -1)) ulimit = llimit + dx;	almost entire program and it is time-consuming and hard to debug mmm
<pre>in(Tallk != (Size -1)) ullilit = lillilit + ux, else ulimit = MAX; temp_res = 0; for(i=llimit; i < ulimit; i++){ array[i] = func(i); temp_res += array[i];} MPI_Allreduce(&temp_res, &res, 1, MPI MPI_Finalize(); }</pre>	_INT, MPI_SUM,);

Also includes Co-Array Fortran like feature as "local-view" programming model

Performance-awareness

SPMD as a basic execution model

A thread starts execution in each node independently (as in MPI)

int a[16];Data Mapping#pragma xmp nodes p(4)#pragma xmp template t(0:16)#pragma xmp distribute t(block) onto p#pragma xmp align a[i] with t(i)	
Node 0	
Node 1 I <th></th>	
Node 3 Distributed Array	
#pragma xmp loop on t(i)	Work Mapping

Communication, synchronization and work-mapping occur when directives are encountered

All actions are taken by directives for being "easy-to-understand" in performance tuning (different from High Performance Fortran)

