
XcalableMPXcalableMP
Directive-Based Language eXtension for

Scalable Parallel Programming
Directive-Based Language eXtension for

MPI is widely used as a parallel programming model. 
However, the programming cost of MPI is high.
XcalableMP[1-3], XMP for short, is a directive-based 
language extension which allows users to develop 
parallel programs for distributed memory systems 
easily and to tune its performance by having minimal 
and simple notations. 
XMP specification is being designed by XcalableMP 
Specification Working Group(XMP-WG). XMP-WG is 
a special interest group, which is organized to make 
a draft on “petascale” parallel language. XMP-WG 
consists of members from academia(U. Tsukuba, U. 
Tokyo, Kyoto U. and Kyusyu U.), research labs
(RIKEN, NIFS, JAXA, JAMSTEC/ES) and industries
(Fujitsu, NEC, Hitachi) in Japan.
XMP prototype compi ler  and tools are being 
developed in "Seamless and Highly-productive 
Paral le l  Programming Envi ronment  for  High 
performance computing" project funded by Ministry of 
Education, Culture, Sports, Science and Technology, 
JAPAN.

Scalable Parallel Programming

int array[MAX]; 

main(int argc, char **argv){
    MPI_Init(&argc, &argv);
    MPI_Comm_rank(MPI_COMM_WORLD, &rank);
    MPI_Comm_size(MPI_COMM_WORLD, &size);
    dx = MAX/size; 
    llimit = rank * dx;
    if(rank != (size -1)) ulimit = llimit + dx;
    else ulimit = MAX;

    temp_res = 0;
    for(i=llimit; i < ulimit; i++){
        array[i] = func(i);
        temp_res += array[i];}

    MPI_Allreduce(&temp_res, &res, 1, MPI_INT, MPI_SUM, ...);
    MPI_Finalize( );
}

Current Solution for parallel programming

We need better solutions !!
int array[MAX];
#pragma xmp template t(0:MAX-1)
#pragma xmp nodes p(*)
#pragma xmp distribute t(block) onto p
#pragma xmp align array[i] with t(i)

main(){
#pragma xmp loop on t(i) reduction (+:res)
  for(i = 0; i < MAX; i++){
      array[i] = func(i);
      res += array[i];}
}

XcalableMP enables users to 
e a s i l y  d e v e l o p  p a r a l l e l  
p r o g r a m s  a n d  t o  t u n e  
performance with minimal and 
simple notation !!

Only way to program is MPI, 
but MPI programming seems 
difficult,... we have to rewrite 
almost entire program and it 
is time-consuming and hard to 
debug... mmm

Language extension of C99 and Fortran 95

Also includes Coarray Fortran like feature as 
“local-view” programming model

Supports typical parallelization based on data 
paral lel paradigm and work mapping under 
“global-view” programming model

Execution model is a Single Program Multiple 
Data (SPMD) 

To reduce code writing and educational costs

Performance awareness

C o m m u n i c a t i o n ,  
synchronization and 
work-mapping occur 
when directives are 
encountered

A  t h r e a d  s t a r t s  
execution in each 
node independently 
(as in MPI)

All actions are taken by directives for being 
“easy-to-understand” in performance tuning 
(different from High Performance Fortran)

Node 1 Node 2 Node 3

Directives
Comm, sync, and work-mapping

Omni XMP compiler 0.5.3 for C is available from 
University of Tsukuba

What’s XcalableMP?

Features
Status

Download from http://www.xcalablemp.org
Supported platforms are Linux cluster, Cray platform, ..
Interface of Scalasca & tlog profiling tools
For accelerators(GPU, etc)
XMP Parallel I/O 
Interface of MPI library

XMP specification version 1.0 is available

work in progress

XMP will be used to program to K computer

Programming Model
Global-view Programming
The global-view programming model supports typical 
work-mapping and communication for parallel 
programs. 
First, to parallelize a program in the global-view 
model, data distribution is described with a template. 
The template is a dummy array used to express an 
index space associated with an array.  The concept 
of the template is shown in the next page’ s figure. 
The template and a node set are defined by a 
template directive and a node directive. Distribution of 
the template is described by a distribute directive.  
Finally, data distribution of the array is specified by 
an align directive to align the array with the template.

Many concepts are inherited from High Performan-
ce Fortran



Above right figure shows a simple example of the 
global-view programming model in XMP C language. 
Line 3 defines the template with a start index (0) and 
a length of index (N). Line 4 defines the node set (4 
nodes in this case). Line 5 specif ies the data 
distribution of the template on the node set as a block 
distribution. XMP supports block, cyclic, block-cyclic, and 
gen-block distributions. Line 6 defines the distribution 
to align the array with the template.
In line 11, a loop directive is used to parallelize a loop 
statement from Line 12 to Line 15. In this case, node 
1 executes iterations from 0 to N/4 – 1, and node 2 
e x e c u t e s  i t e r a t i o n s  f r o m  N / 4  t o  N / 2  –  1 ,  
independent ly.  L ine 17 executes a reduct ion 
operation on the variable res by a reduction directive. 
The reduction directive supports typical operators 
(such as “+” , “MAX” , and so on).
XMP a lso suppor ts  r ich  communicat ion and 
synchronize directives such as “shadow” , “gmove” , 
and “barrier” . Global-view communication directives 
are used to maintain the consistency of shadow area, 
move distributed data globally, and synchronize 
nodes.

#pragma xmp template t(0:N-1)
#pragma xmp nodes p(4)

index 0 N-1

template t

index 0 N-1

#pragma xmp distribute t(block) onto p

#pragma xmp align array[i] with t(i)

node 1 node 2 node 3 node 4

N/4-1 N/2-1 3*N/4-1

node 1 node 2 node 3 node 4

array[]

index 0 N-1N/4-1 N/2-1 3*N/4-1

node 1 node 2

node 2

node 3 node 4

1   int array[N];
2
3   #pragma xmp template t(0:N-1)
4   #pragma xmp nodes p(4)
5   #pragma xmp distribute t(block) onto p
6   #pragma xmp align array[i] with t(i)
7
8   main(void){
9      int i, res = 0;
10
11 #pragma xmp loop on t(i)
12    for(i = 0; i < N; i++){
13         array[i] = func(i);
14         res += array[i];
15         }
16
17 #pragma xmp reduction (+:res)
18 }

Reference
[1] Jinpil Lee, Minh Tuan Tran, Tetsuya Odajima, Taisuke 
Boku and Mitsuhisa Sato: An Extension of XcalableMP 
PGAS Language for Multi-node GPU Clusters, Ninth 
International Workshop on Algorithms, Models and Tools 
for Parallel Computing on Heterogeneous Platforms 
(HeteroPar 2011), 2011.

[2] Jinpil Lee and Mitsuhisa Sato: Implementation and 
Performance Evaluation of XcalableMP: A Parallel 
Programming Language for Distributed Memory Systems, 
The 39th international Conference on Parallel Processing 
Workshops (ICPPW10), pp.413-420, 2010.

[3] Masahiro Nakao, Jinpil Lee, Taisuke Boku, Mitsuhisa 
Sato. “XcalableMP Implementation and Performance of 
NAS Parallel Benchmarks” , Fourth Conference on 
Partitioned Global Address Space Programming Model 
(PGAS10), Oct., 2010.

T2K Open Supercomputer Alliance (#5007@Level 6)
Center for Computational Sciences, University of 
Tsukuba (#923@Level 4)
http://www.xcalablemp.org

For more information, please visit 

Example

Local-view Programming
The local-view programming model attempts to 
increase performance by considering inter-node 
communication and local memory of each node 
explicitly. In this model, local data distributed on the 
node can be referred to using node number.
XMP adopts coarray notation as an extension of 
Fortran and C languages for local-view programming. 
In the case of Fortran as the base language, the 
notation of XMP coarray is compatible with that of 
Coarray Fortran. To use coarray notation in C, we 
propose a language extension of the C language. To 
access coarray, the node number is specified by 
following an array reference by “:” . 

array_name[start : length[:step]]:[node_number]

The array_name[start:length]:[node_number] means 
elements from the array_name[start] to the 
array_name[start+length-1] located on compute node 
whose name is node_number.
XMP recommends users to choice the global-view 
programming model and the local-view programming 
model according to an algorithm.

double a[5], b[5];
#pragma xmp coarray a   // Declartion
    :
b[0:2] = a[3:2]:[2];            // Communication

Node 1

Node 2

a[] b[]

#pragma xmp template t(0:YSIZE-1, 0:XSIZE-1)
#pragma xmp nodes p(N_Y, N_X)
#pragma xmp distribute t(block,block) onto p
#pragma xmp align u[y][x] with t(x, y)
#pragma xmp align uu[y][x] with t(x, y)
#pragma xmp shadow uu[1:1][1:1]    
               :                                      
#pragma xmp loop (x, y) on t(x, y) threads
for(y = 1; y < YSIZE-1; y++) 
   for(x = 1; x < XSIZE-1; x++)
      uu[y][x] = u[y][x];

#pragma xmp reflect uu

#pragma xmp loop (x, y) on t(x, y) threads
for(y = 1; y < YSIZE-1; y++)
   for(x = 1; x < XSIZE-1; x++)
      u[y][x] = (uu[y-1][x] + uu[y+1][x] +
                          uu[y][x-1] + uu[y][x+1])/4.0;

Specifies additional
thread parallelization

Synchronizes data only
on shadow area

Defines shadow area
and its width

Defines two dimensional
process grid

The laplace solver is the implementation of a laplace 
equation using Jacobi iteration with 4 points-stencil 
operations. This code is an example to use shadow 
and re f lec t  direct ives  which communicate and 
synchronize only overlapped region. Moreover, 
thread parallelization is used in loop statements. 
XMP can program simply by using shadow/reflect 
operations with keeping serial code image.

Laplace Solver by Global-view programming

Integer Sort of NPB by Local-view programming

int key[SIZE];
#pragma xmp coarray key
               :  
#pragma xmp barrier   
for( i=0; i<comm_size; i++ ) 
   key[recv_displ[i]:count[i]]:[i] 
                          = buff[send_displ[i]:count[i]];     

Defines co-array

Exchanges data by 
using coarray

The Integer Sort benchmark tests a sorting operation 
that is important in particle method codes. This code 
is  an example to use coarray  funct ion which 
exchanges data. XMP coarray function will use 
efficient one-sided communication library GASNet, 
ARMCI, and so on.


