
Directive-Based Language eXtension for Scalable
and Performance-Aware Parallel Programming

XcalableMP

MPI is widely used as a parallel program-
ming model. However, the programming
cost of MPI is high.

XcalableMP [1][2] is a directive-based
language extension which allows users to
easily develop parallel programs for distrib-
uted memory systems and to tune the per-
formance by having minimal and simple
notations.

The specification has been being designed
by XcalableMP Specification Working
Group which consists of members from
academia and research labs to industries in
Japan. Features of XcalableMP are sum-
marized as follows:

What’ s XcalableMP?

Related WorksXcalableMP supports typical parallel-
ization based on the data parallel para-
digm and work mapping under global-
view programming model.

The important design principle of Xcal-
ableMP is performance awareness. All
actions of communication and synchro-
nization are taken by directives.

XcalableMP also includes CAF-like fea-
ture as local-view programming.

XcalableMP APIs are defined on C and
Fortran 95 as a base language.

Existing parallel programming languages or
models for distributed memory system,
such as Co-Array Fortran (CAF), HPF, and
XPF (Fujitsu VPP Fortran) provide various
features to describe parallel programs and
to execute them efficiently. However, these
features are often too complicated for most
users to write parallel programs.

HPF provides many useful directives to
describe parallel programs. HPF makes it
easier to write parallel programs from serial
programs. However, it is not always easy to
achieve high performance. In HPF, inter-
nodes communications are automatically
inserted by the compiler. That makes it diffi-
cult for theand optimize performance.

Current Solution for parallel programming

We need better solutions !!
int array[MAX];
#pragma xmp nodes p(*)
#pragma xmp template t(0:MAX-1)
#pragma xmp distribute t(block) onto p
#pragma xmp align array[i] with t(i)

main(){
#pragma xmp loop on t(i) reduction (+:res)
 for(i = 0; i < MAX; i++){
 array[i] = func(i);
 res += array[i];}
}

XcalableMP enables users to
e a s i l y d e v e l o p p a r a l l e l
p r o g r a m s a n d t o t u n e
performance with minimal
and simple notation !!

int array[MAX];
main(int argc, char **argv){
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 dx = MAX/size; llimit = rank * dx;
 if(rank != (size -1)) ulimit = llimit + dx;
 else ulimit = MAX;

 for(temp_res = 0, i=llimit; i < ulimit; i++){
 array[i] = func(i);
 temp_res += array[i];}

 MPI_Allreduce(&temp_res, &res, 1, MPI_INT, ...);
 MPI_Finalize();
}

Only way to program is MPI,
but MPI progrraming seems
difficult,... we have to rerwite
almost entire program and it
is time-consuming and hard to
debug... mmm

