# Development of Graph Library and Optimization Algorithm  for Order/Radix Problem 

${ }^{\dagger}$ Masahiro Nakao, ${ }^{\ddagger}$ Masaki Tsukamoto, ${ }^{\ddagger}$ Kosuke Kakizako, ${ }^{\ddagger}$ Yoshiko Hanada, ${ }^{\text { }}$ Keiji Yamamoto ${ }^{\dagger}$ RIKEN Center for Computational Science, ${ }^{\ddagger}$ Kansai University

## HErder/Radix Problem

## | Background

- Network in distributed memory system is required to increase its scale and reduce its latency
- A good network topology has a small number of hops between hosts
- When connecting hosts randomly, the number of hops shrinks due to the small world effect, and its latency decreases [Koibuchi2013]


Regular Topology (It takes a long time for the message to arrive)


Randomized Topology (Shortcut allows a message to arrive soon)

## | Definition of Order/Radix Problem

- A topology of an indirect network can be represented as an undirected graph by regarding its hosts and switches as vertices and its network cables as edges.
- Order/Radix Problem involves finding a graph with the minimum diameter and h-ASPL (host to host Average Shortest Path Length) from a set of undirected graphs that satisfy a given number of host $h$ and degree d.


## | GraphGolf Competition

The purpose of the competition is to find graphs with the smallest diameter and $h$-ASPL in some problems with different $h$ and d combinations, organized by National Institute of Informatics.

http://research.nii.ac.jp/graphgolf/

## HiApproach

## | Overview

- Our algorithm uses Simulated Annealing (SA), its search performance is improved due to graph symmetry
- You can download our optimization algorithms and graph library in https://github.com/mnakao/ORP
- The h-ASPL is $\left(\sum_{0 \leq i<j<s}\left(l\left(s_{i}, s_{j}\right)+2\right) \cdot w_{i} w_{j}+\sum_{0 \leq i<s} w_{i}\left(w_{i}-1\right)\right) /\binom{h}{2}$

The distance between switch $s_{i}$ and $s_{j}$ is $l\left(s_{i}, s_{j}\right)$ The number of hosts adjacent to switch $s_{i}$ is $w_{i}$

| Make the network topology symmetrical


Swap edges while maintaining symmetry. (A) swaps two edges between switches, (B) swaps an edge between switches and an edge between host and switch.

## Evaluation

## | Calculation time on Cygnus

 (hosts, switches, radix) $=(65536,4096,64)$

## | Examples

| Results
■ symmetry .... no-symmetry


(hosts, radix) $=(32,4)$

$(80,6)$

$(432,12)$
| GraphGolf Competition


We won the award !!


