
Development of Graph Library and Optimization Algorithm for Order/Radix Problem

[†]Masahiro Nakao, [‡]Masaki Tsukamoto, [‡]Kosuke Kakizako, [‡]Yoshiko Hanada, [†]Keiji Yamamoto [†]RIKEN Center for Computational Science, [‡]Kansai University

Order/Radix Problem

Background

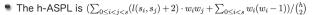
- Network in distributed memory system is required to increase its scale and reduce its latency
- A good network topology has a small number of hops between hosts
- When connecting hosts randomly, the number of hops shrinks due to the small world effect, and its latency decreases [Koibuchi2013]

Definition of Order/Radix Problem

- A topology of an indirect network can be represented as an undirected graph by regarding its hosts and switches as vertices and its network cables as edges.
- Order/Radix Problem involves finding a graph with the minimum diameter and h-ASPL (host to host Average Shortest Path Length) from a set of undirected graphs that satisfy a given number of host h and degree d.

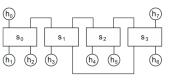
GraphGolf Competition

The purpose of the competition is to find graphs with the smallest diameter and h-ASPL in some problems with different h and d combinations, organized by National Institute of Informatics.


http://research.nii.ac.jp/graphgolf/

Approach

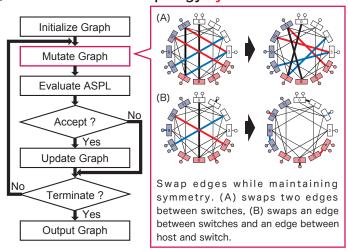
the message to arrive)

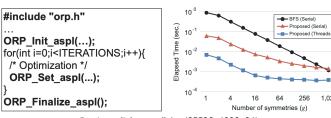

Overview

- Our algorithm uses Simulated Annealing (SA), its search performance is improved due to graph symmetry
- You can download our optimization algorithms and graph library in https://github.com/mnakao/ORP

The distance between switch s_i and s_j is $l(s_i, s_j)$ The number of hosts adjacent to switch s_i is w_i'

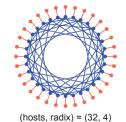
to arrive soon)

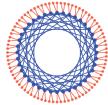

(hosts, switches, radix) = (8, 4, 4)


h-ASPL = 91/28 = 3.25

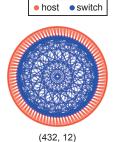
Make the network topology symmetrical

Evaluation


Calculation time on Cygnus



(hosts, switches, radix) = (65536, 4096, 64)


Results symmetry no-symmetry Gap Normalized h-ASPL 0.6 0.4 0.2 (432,12) (1024,10) (3800,30) (8208,48) (10k,100) (1024,5) (1281,21) (4608,36) (10k,10) (64Ki,64)

Examples

(80, 6)

GraphGolf Competition

We won the award !!

