Performance improvement of MODYLAS using
Ol“ Remote Direct Memory Access on the K computer

Masahiro Nakao, Hitoshi Murai, Mitsuhisa Sato, Yoshimichi Andoh’ Susumu Okazaki’

(1. RIKEN Center for Computational Science, 2. Nagoya University)

.= What is MODYLAS ? nus/mmmmodyiasorg

MOlecular DYnamics software for LArge System

MODYLAS utilizes the fast multipole pmm» T

method (FMM) for the calculation of “
the electrostatic interactions

MODYLAS is executed on

large-scale supercomputers such as

the K computer (right figure)

SPARC64 VIlIIfx 2GHz,

DDR3 SDRAM 16GB,
Tofu interconnect 5GB/s

Our preliminary evaluation indicates
the time required for MPl communi-
cation is limited by its latency

=m Approach

| Replacement MPI with RDMA

@ The K computer provides users with the extended RDMA
interface so that they can issue RDMA operations (Put/Get)
with low latency

@ This graph shows a comparison of latency between MPI and
RDMA (Put) on the K computer using ping-pong benchmark

__10°
° = MPI
) - RDMA (Put)
? 102
o
S
£
;
10 RDMA (Put) is
S always better
®
-

8 64 512 4K 32K 256K 2M
Transfer data size (Byte)

== Evaluation

| Communication time using MPl and RDMA

® RDMA communication time is 29-42% less than MPI
communication time on the data set with three FMM levels

® Most transfer data sizes are less than 32K bytes, which is a
sufficient size to demonstrate the superiority of RDMA

800

700 = MPI
600 B RDMA (Put)

500
400
300
200
100
0

8 16 32 64 128 256

Number of Processes

Time (microsecond) per step

== Summary

@ In order to improve the performance of MODYLAS, this
research replaces MPl communication with Remote Direct
Memory Access (RDMA) on the K computer

@ Since the K computer provides the extended RDMA
interface for RDMA operations, we implement a library to
use the interface from MODYLAS easily

@ As a result of measuring the performance of MODYLAS, the
RDMA communication time is 29-42% less than the
MPI communication time

I Modified code of MODYLAS

We implement a library to use the extended RDMA interface
from MODYLAS easily

integer(4),allocatable,dimension(:) :: icbufp

allocate(ircbufp(s)) Register array to
#ifdef RDMA use RDMA

call rdma_register_addr(ircbufp, s*4)

#endif

#ifdef RDMA

integer(8),pointer :: ircbufp_raddr(:)
type(c_ptr) :: ircbufp_cptr

ircbufp_cptr = rdma_get_raddr(ircbufp)
call c_f_pointer(ircbufp_cptr, fptr=ircbufp_raddr, shape=[nprocs])
call rdma_put_post(ipz_pdest, ircbufp_raddr(ipz_pdest+1), ...)
call rdma_wait(ipz_psrc)

#else

call mpi_irecv(ircbufp, ..., ipz_psrc, ...)
call mpi_isend(icbufp, ..., ipz_pdest, ...)
call mpi_waitall(2, ...)

#endif

Get information
of remote arrays

Perfom RDMA PUT
communication

| Calculation time using MPl and RDMA

® This table shows the total calculation time including
communication time per step

@ Although the efficiency has increased by a factor of 2.91~
4.68% overall, this will further increase for calculations with
strong scaling with tuned code for hotspot calculations

Num. of Proc. | 8 16 32 64 128 256

MPI 16,129 9,973 6,941 5,636 4,624 4,151
RDMA (Put) 15,551 9,684 6,706 5384 4,467 4,033

Improvement| 3.72% 2.99% 3.50% 4.68% 3.51% 2.91%

| Future Work

® To make MODYLAS available for reducing communication
times in various computing environments, we will utilize
coarray features of the Fortran standard

@ Since the coarray features provide users with one-sided
communication, and its implementation may use RDMA that
each machine has



