MPI/OpenMP並列によるグラフ対称性と Simulated Annealingを用いた Order/Degree問題の一解法

中尾 昌広,村井均,佐藤三久(理化学研究所計算科学研究センター)

- Order/Degree Problem (ODP) in graph theory
 - Find a graph with smallest diameter and average shortest path length (ASPL) given an order (n:頂点数) and a degree (d:次数)
 - Degree is a number of edges connected to one node
 - ASPL is an average of the distances between all nodes
 - Examples of the graph with (n, d) = (10, 3)

Diameter = 3 (maximum value in distances)

ASPL = 85/45 = 1.88...

distance matrix

- Order/Degree Problem (ODP) in graph theory
 - Find a graph with smallest diameter and average shortest path length (ASPL) given an order (n:頂点数) and a degree (d:次数)
 - Degree is a number of edges connected to one node
 - ASPL is an average of the distances between all nodes
 - Examples of the graph with (n, d) = (10, 3)

Diameter = 3 (maximum value in distances)

ASPL = 85/45 = 1.88...

- Order/Degree Problem (ODP) in graph theory
 - Find a graph with smallest diameter and average shortest path length (ASPL) given an order (n:頂点数) and a degree (d:次数)
 - Degree is a number of edges connected to one node
 - ASPL is an average of the distances between all nodes
 - Examples of the graph with (n, d) = (10, 3)

Diameter = 3 (maximum value in distances)

ASPL = 85/45 = 1.88...

distance matrix

- Order/Degree Problem (ODP) in graph theory
 - Find a graph with smallest diameter and average shortest path length (ASPL) given an order (n:頂点数) and a degree (d:次数)
 - Degree is a number of edges connected to one node
 - ASPL is an average of the distances between all nodes
 - Examples of the graph with (n, d) = (10, 3)

- ODP is useful for design of network topology with low latency
 - Network topology in HPC systems affects its performance
 - Supercomputers

- Data centers in Google, Amazon etc.
- Processor chip (e.g. Knights Landing has 72 cores)
 - Packet network in many core processor

https://www.extremetech.com/extreme/171678-intel-unveils-72-core-x86-knights-landing-cpu-for-exascale-supercomputing

Graph Golf Competition for ODP

- http://research.nii.ac.jp/graphgolf
- Held by National Institute of Informatics, Japan since 2015
- Rule
 - Find each graph with the smallest diameter and ASPL in 14 problems in 2018
 - Problems are changed every year
 - Participants uploads their graphs on the official website within a limited period (May 14 to Oct. 14, 2018)

No	Problem (n, d)
1	72, 4
2	256, 5
3	256, 10
4	2300, 10
5	3019, 30
6	4855, 30
7	12000, 7
8	20000, 11
9	40000, 8
10	77000, 6
11	132000, 8
12	200000, 32
13	200000, 64
14	400000, 32

Objective

- Proposes an algorithm for efficiently solving ODP
 - Based on "graph symmetry" and "simulated annealing (SA)"
 - Evaluate "search performance" and "speed performance"
 - Won award of Graph Golf 2018

Award ceremony, CANDAR'18, Takayama, Gifu, Japan

Agenda

- Background
- Related works
- Explain our algorithm
- Evaluation of search and speed performances
- Summary

Related Works (2/3)

- Randomized topology [Koibuchi2012, Koibuchi2013, Singla2012]
 - When connecting nodes randomly, the distance shrinks due to the small world effect, and its latency decreases
 - Extensibility and failure resistance
 - For cases where the cable length becomes long, it can be relaxed by rack placement optimization

(It takes a long time for the message to arrive)

Randomized Topology (Shortcut allows a message to arrive soon)

https://www.nii.ac.jp/userimg/openhouse/2015/B11.pdf (Partial modification)

Related Works (3/3)

Are randomized topologies best ? -> No

From the numbers of nodes *n* and degrees *d*, the theoretical diameter lower bound K_{n,d} and the ASPL lower bound L_{n,d} are calculated

$$K_{n,d} = \begin{cases} \left\lceil \frac{n-1}{2} \right\rceil & \text{if } d = 2\\ \left\lceil \log_{d-1}(\frac{(n-1)(d-2)}{d}) + 1 \right\rceil & \text{if } d > 2 \end{cases}$$

$$L_{n,d} = \begin{cases} 1 & \text{if } K_{n,d} = 1\\ \frac{S_{n,d} + K_{n,d}R_{n,d}}{n-1} & \text{if } K_{n,d} \ge 2 \end{cases}$$

$$S_{n,d} = \sum_{i=1}^{K_{n,d}-1} id(d-1)^{i-1}$$

$$R_{n,d} = n - 1 - \sum_{i=1}^{K_{n,d}-1} d(d-1)^{i-1}$$

Difference between ASPL and theoretical lower bound is large

Agenda

- Background
- Related works
- Explain our algorithm
- Evaluation of search and speed performances
- Summary

What are difficult points in ODP ?

(1) The number of graphs satisfying the given number of nodes and degrees is enormous

- Number of graphs satisfying (n, d) = (12, 4) is about 480 Billions
- It is difficult to find the best solution because the problem has many local optima

(2) The calculation time required for obtaining ASPL is enormous

- The calculation complexity with *n* nodes and *d* degrees is **O(n^2*d)**
- For the graph with (n, d) = (400000, 32), the calculation time required for obtaining ASPL is about 5.5 hours on Xeon Ivy Bridge (Diameter can be calculated simultaneously with ASPL)

Origin of idea

- What kind of topology does small diameter and ASPL have ?
 - Randomized topology is better than regular topology for latency
 - But, randomized topology is not best

Origin of idea

- What kind of topology does small diameter and ASPL have ?
 - Randomized topology is better than regular topology for latency
 - But, randomized topology is not best

Topology with both regular and randomized properties may be better

Approach

(1) Make the network topology symmetrical

- SA's search performance may be improved due to reduce search space
- The reason for using SA is that it doesn't easily fall into local optima

(2) Reducing the calculation time of ASPL

- Reduce calculation time of ASPL by the network topology symmetrical (Up to 10,000 times)
- Hybrid parallelization with MPI and OpenMP on our cluster system (Up to 200 times on 400 CPU cores)
- Calculation time of ASPL decreased from 5.5 hours to 0.01 sec.

Our source code is available at https://github.com/mnakao/GraphGolf

about 2,000,000 times faster (= 10,000 x 200)

Graph symmetry

• Examples of the graph symmetry with (n, d) = (24, 3)

- The variable **g** is the number of groups (g must be a divisor of n)
- When a graph is viewed as a plane, if it is rotated by 360/g degrees, the connection relationship between the edge and the node becomes the same graph
- For the case of g = 1, a normal graph (not symmetrical) is obtained

SA with Graph symmetry

(1) Create a random graph with the number of nodes of the target graph divided by g, and duplicate g the graphs (the graph with (n, d) = (6, 3) is created x 4). And select one edge from each graph.

(2) Connect both sides so that it becomes symmetrical

SA with Graph symmetry

Mutate a new solution (n, d, g) = (24, 3, 2)

- (1) Randomly select two edges from all the edges
- (2) Select edges symmetrically related to (1)
- (3) Apply the 2-opt method to the edges selected in (1)
- (4) Apply the 2-opt method to (2) in the same way as (3)

SA with Graph symmetry

- Reduce the calculation time for ASPL
 - In general, it calculates the distance from all nodes to all other nodes using BFS
 - However, with graph symmetry, the distances from the node to all other nodes are the same for all symmetrically related nodes
 - Thus, the complexity becomes O(n^2*d/g) from O(n^2*d)

Agenda

- Background
- Related works
- Explain our algorithm
- Evaluation of search and speed performances
- Summary

Search Performance

- In vertical axis, ASPL Gap is a difference from theoretical lower bound
- Proposed method is executed 100 times with different g
- Search performance tends to increase as the g increases
- However, the problem (n, d) = (72, 5), the search performance is better for g=9 than for g=12, indicating that the solution performance may deteriorate if the value of g is too large
 - The g expresses the strength of regularity of a graph; regularity becomes stronger as g increases

Search Performance

Theoretical lower bound

Best solution in Graph Golf Theoretical lower bound

How do I set the value of g?

- Firstly, set a value of g which is as large as possible
- Next, gradually reduce the value of g
- (n, d) = (132000, 8)

Speed Performance

• COMA cluster system at University of Tsukuba

CPU	Intel Xeon-E5 2670v2 2.8 GHz x 2 Sockets	
Memory	DDR3 1866MHz 59.7GB/s 64 GB	
Network	InfiniBand FDR $7GB/s$	
Software	intel/16.0.2, intelmpi/5.1.1, Omni Compiler 1.2.1	
	Python 2.7.9, networkx 1.9	

Speed-up techniques

- Graph symmetry
- Hybrid parallelization with MPI and OpenMP

Performance results by Graph Symmetry

Measure time to calculate ASPL 100 times

- The bar graph shows the time on the left vertical axis, and the line graph shows the speed up ratio with g = 1 on the right vertical axis
- Speed ups of 8.11, 31.76, 15.67 times, respectively, were achieved for (n, d, g) = (72, 4, 12), (256, 5, 32), and (256, 10, 16)

Performance results by Hybrid Parallelization

- Multiple BFS are simultaneously executed using MPI, and each BFS is executed in parallel using several OpenMP threads
- Number of Process is P, and Number of Threads is T
- The maximum value P is (n/g)
- In problem (n, d, g) = (400000, 32, 10000), the performance obtained with 40P10T is 209.80 (5.97 x 35.11) times better than that obtained with 1P1T

Results of Graph Golf 2018

No	Problem (n, d)	Groups	ASPL Gap	+ .
1	72, 4	9	0	X
2	256, 5	32	0.02255	
3	256, 10	16	0	
4	2300, 10	115	0.03132	
5	3019, 30	15	0.00237	
6	4855, 30	15	0.00057	
7	12000, 7	1000	0.26531	. + .
8	20000, 11	1000	0.12263	
9	40000, 8	1600	0.12066	
10	77000, 6	2200	0.22312	.+ .
11	132000, 8	4400	0.29266	
12	200000, 32	5000	0.01362	
13	200000, 64	2500	0.25707	
14	400000, 32	10000	0.07890	

Proposed method won 8 problems in 14 problems

Related Work 2

	Rank	Author	Number of best solutions
Ŧ	1	Masahiro Nakao	8
	2	haruishi masato	6

Haruishi's algorithm uses voltage graphs

- Regular topology
- Merit
 - Relatively small diameter and ASPL
 - Calculation time for ASPL using regularity is small
- Demerit
 - Diameter and ASPL may not be small in some cases
 - Specific number of nodes

http://research.nii.ac.jp/graphgolf/2018/candar18/graphgolf2018-haruishi.pdf

Agenda

- Background
- Related works
- Explain our algorithm
- Evaluation of search and speed performances
- Summary

Conclusion

- In the proposed method, the topology is made symmetrical, making it possible to efficiently find a good solution
- Making the topology of the graph symmetrical reduced the calculation time required for the ASPL
 - Moreover, by utilizing hybrid parallelization with MPI and OpenMP, the calculation time for the ASPL was further reduced
 - A performance improvement of 209.80 times was achieved for the problem (n, d, g) = (400000, 32, 10000) using only the hybrid parallelization
 - In addition, since graph symmetry was also applied, the performance improvement was about 2,098,000 times compared to that obtained with g=1
 - The calculation time of ASPL decreased from 5.5 hours to 0.01 seconds

Future works

- Graph Symmetry is basic idea.
 - It can be combined with optimization algorithm other than SA
 - e.g. Deep Learning, Genetic Algorithms, etc.

When n is a prime number

- In Graph Golf 2018, there is a problem with (n, d) = (3019, 30)
- When n is a prime number, g cannot be set in the method explained so far
 - Extend the method to deal with cases where n is a prime number
 - Add center points to the graph

$$\frac{n503d30}{groups} \times \frac{g6}{groups} + \frac{c1}{c1} = n3019d30$$

(n, d) = (503, 30)
centers = 1
503 x 6 + 1 = 3019

In addition, the following combinations are possible.

 $n301d30 \ge g10 + c9 = n3019d30$ $n200d30 \ge g15 + c19 = n3019d30$ $n100d30 \ge g30 + c19 = n3019d30$

How are parameters of SA set?

- 最高温度:初期解(ランダムグラフ)に対して100回ランダム
 にエッジを交換して得られるエネルギーの差を50%で受理
- 最低温度:理論的な最小のエネルギー差(2/(n*(n-1)))を 0.01%で受理
- クーリング率:1
- 総計算回数:100万回

詳細は予稿集の4.1「パラメータの設計指針」を参照ください